ラグランジェとエルミート補間についての質問

このQ&Aのポイント
  • ラグランジェとエルミート補間について質問があります。
  • エルミート補間の式の一部が理解できません。
  • ラグランジェ補間の式に類似した式が存在し、重要な特殊ケースに適用されます。
回答を見る
  • ベストアンサー

ラグランジェとエルミート補間についての質問です。

こんにちは。質問の内容は、以下の文章についてです。 「Lagrange Form In principle, formulas akin to the Lagrange interpolation formula can be developed for Hermite interpolation. We shall present one such formula that pertains to an important special case. As before, let the nodes be X1,X2,...,Xn, and let us assume that at each node a function value and the first derivative have been prescribed. The polynomial p that we seek must satisfy these equation: p(Xi)=Ci0 p'(Xi)=Ci1 (0=<i<=n) ・・・・(1) In analogy with the Lagrange formula, we write p(X)=Σ(i=0→n)Ci0×Ai(X)+Σ(i=0→n)Ci1×Bi(X)・・・・(2)」 という文章なのですが、Σ(i=0→n)Ci1×Bi(X)がよく理解できません>< エルミート補間が理解できていないからでしょうか??アドバイスお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#57316
noname#57316
回答No.1

p(X)=Σ(i=0→n)Ci0×Ai(X)+Σ(i=0→n)Ci1×Bi(X) は、「X」における値に、微分係数に「Xの微分」をかけた値を加え、 「X+ΔX」における値を求めているのだと思います。 Σ(i=0→n)Ci1×Bi(X)は、 「Σ(i=0→n)Ci1×Bi(X)・ΔX」の間違いではないですか? それとも、Bi(X)には、既にXの微分が掛かっているのかな?

関連するQ&A

  • 逆数補間の計算方法について

    こんにちは。前にも書かせてもらいましたが、どうしても計算ができないので、もう一度質問させてもらいました。 以下のような、洋書を読んで、最後にあるP(y)を出したいのですが、計算方法がわかりません。 ---------------------------------------------------------------- [Inverse Interpolation] A process called inverse interpolation is often used to approximate an inverse function. Suppose that values {Yi}=f({Xi}) have been computed at X0,X1,...,Xn. Using table Y ; Y0 Y1 Y2 ......Yn X ; X0 X1 X2 ......Xn we form the interpolation polynomial p(y)=Σ(i=1→n)CiΠ(j=0→i-1){Y-Yj} The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef. Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0). For a concrete case, let the table of known values be Y;-0.5789200,-0.3626370,-0.1849160,-0.0340642,0.0969858 X; 1.0 , 2.0 , 3.0 , 4.0 , 5.0 The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 and p(0)=4.247470086. Only the last coefficient is shown with all the digits carried in the calculation, for it is the only one needed for the problem at hand. ---------------------------------------------------------------- <補足>CoefとEvalについて 「 procedure; Coef(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Yi}0:n, {Ai}0:n integer; i,j,n for i=0 to n do {Ai}←{Yi} end for for j=1 to n do for i=n to j step -1 do Ai←({Ai}-{Ai-1})/({Xi}-{Xi-j}) end for end for end procedure Coef 」 「 real function; Eval(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Ai}0:n integer; i,n real;t,temp temp←An for i=n-1 to 0 step -1 do temp←(temp)(t-{Xi})+{Ai} end for Eval←temp end function Eval」 ------------------------------------------------------------- XとYを扱い方がよくわかっていないので、計算できないのかなあと思います。分かる方、アドバイスお願いします(泣)

  • 逆関数の補間について

    こんにちは。前に質問させてもらい、計算については 理解できました。しかし、以下の文章のある部分の意味がわかりません。まず、文章は、 [Inverse Interpolation] A process called inverse interpolation is often used to approximate an inverse function. Suppose that values {Yi}=f({Xi}) have been computed at X0,X1,...,Xn. Using table Y ; Y0 Y1 Y2 ......Yn X ; X0 X1 X2 ......Xn we form the interpolation polynomial p(y)=Σ(i=1→n)CiΠ(j=0→i-1){Y-Yj} The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef. Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0). For a concrete case, let the table of known values be Y;-0.5789200,-0.3626370,-0.1849160,-0.0340642,0.0969858 X; 1.0 , 2.0 , 3.0 , 4.0 , 5.0 The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 and p(0)=4.247470086. Only the last coefficient is shown with all the digits carried in the calculation, for it is the only one needed for the problem at hand. ---------------------------------------------------------------- <補足>CoefとEvalについて 「 procedure; Coef(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Yi}0:n, {Ai}0:n integer; i,j,n for i=0 to n do {Ai}←{Yi} end for for j=1 to n do for i=n to j step -1 do Ai←({Ai}-{Ai-1})/({Xi}-{Xi-j}) end for end for end procedure Coef 」 「 real function; Eval(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Ai}0:n integer; i,n real;t,temp temp←An for i=n-1 to 0 step -1 do temp←(temp)(t-{Xi})+{Ai} end for Eval←temp end function Eval」 ------------------------------------------------------------- です。この文章の 「The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef. Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0).」 という部分が理解できません。わかる方アドバイスお願いします(泣)

  • エルミート補間の誤差の定理について

    こんにちは。最近、エルミート補間公式を勉強していまして、そこで出てきた定理についての質問です。 定理  点X0,X1,...Xnが区間[a,b]にあり、fが(2n+2)級である。  p(Xi)=f(Xi),p'(Xi)=f'(Xi) (0<=i<=n) を満たすとき、(2n+1)次の多項式pがあれば、  f(X)-p(X)={f(2n+2)(ξ)*Π(i=0→n)(X-Xi)^2}/(2n+2)! (ただし、f(2n+2)はfの(2n+2)回微分という意味です。) を満たすξが(a,b)に存在する。 という定理を証明したいのですが、途中でわからなくなりました。 自分で、考えた解答→ w(X)=Π(i=0→n)(X-Xi)^2・・・・(1)とおき、 f(X)=p(X)+G(X)*w(X)・・・・(2)となるG(X)求める。 X=Xiでないときは、G(X)={f(X)-p(X)}/w(X)・・・・(3)となり、G(X)は 求まる。次に、X=Xiのときも、w'(Xi)=0しかしw''(Xi)=0でない。 よって、ロピタルの定理より G(Xi)=lim(X→Xi){f''(X)-p''(X)}/w''(X)={f''(Xi)-p''(Xi)}/w''(Xi)・・・・(4) となりG(X)は求まる。 (ア)X=Xiでない(i=0,1,,,,n)のとき w(X)=0でないので、G(X)が求まり、このXを固定して、zの関数として、 φ(z)=f(z)-p(z)-w(z)*G(X)・・・・(5) を考える。φ(z)はz=X,X0,X1,,,,,Xnの(n+2)個の点で0になるので、 ロルの定理より、 φ'(z)は、これらの点の間にある(n+1)個の点で0になる。 ・・・・・ 質問1;これから先がわからないのでアドバイスがほしいです。 質問2;ここまでの解答で間違っているところはないですか?? 自分で考えて、限界がきたので質問させてもらいました。アドバイスよろしくお願いします><

  • 逆数補間についての内容です。

    こんにちは。 私は、大学生で、補間についての勉強をしているものです。今回、始めて、洋書を読むことになり苦戦しております。以下の内容はどういったものなのでしょうか?アドバイスをいただきたいと思い、書かせてもらいました。 _______________________________________________________________ [Inverse Interpolation] A process called inverse interpolation is often used to approximate an inverse function. Suppose that values {Yi}=f({Xi}) have been computed at X0,X1,...,Xn. Using table Y ; Y0 Y1 Y2 ......Yn X ; X0 X1 X2 ......Xn we form the interpolation polynomial p(y)=Σ(i=1→n)CiΠ(j=0→i-1){Y-Yj} The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef. Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0). For a concrete case, let the table of known values be Y;-0.5789200,-0.3626370,-0.1849160,-0.0340642,0.0969858 X; 1.0 , 2.0 , 3.0 , 4.0 , 5.0 The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 and p(0)=4.247470086. Only the last coefficient is shown with all the digits carried in the calculation, for it is the only one needed for the problem at hand. ________________________________________________________________ 自分で計算しても、p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 となりません(泣) 

  • 補間についての質問です。

    こんにちは。 大学4年で、数値解析の研究をしているものです。 早速ですが、英語の教科書を読んでて、補間で、コンピュータのプログラムの説明が書かれていて、そこに「Coef」や「Eval」とかいてあったのですがこれは、どういったプログラムなのでしょうか?? あと「Write puseudocode that determines that Newton form of the interpolating polynomial p for sin(x) at ten equidistant points in the interval [0,1.6875]. The code should print the value of sin(x)-p(x) at 37 equally spaced points in the same interval.」の意味がよくわわからないのでアドバイスお願いします(泣)

  • 最少二乗推定量の共分散Cov(αハット,βハット)

    最少二乗推定量の共分散Cov(αハット,βハット)の計算について教えてください。 ☆ci=(xi-xバー)/[i=1,n]Σ(xi-xバー)^2 ☆xバー=1/n*[i=1,n]Σxi ☆E(αハット)=α ☆E(βハット)=β ☆誤差項εiの分散はσ^2 とするとき・・・・・ Cov(αハット,βハット) =Cov(α+[i=1,n]Σ(1/n-ci*xバー)*εi,β+[i=1,n]Σci*εi)・・・(i) =Cov([i=1,n]Σ(1/n-ci*xバー)*εi,[i=1,n]Σci*εi)・・・(ii) =E(([i=1,n]Σ(1/n-ci*xバー)*εi)*([i=1,n]Σci*εi))・・・(iii) =E([i=1,n]Σ(1/n-ci*xバー)*ci*εi^2)・・・(iv) =[i=1,n]Σ(1/n-ci*xバー)*ci*E(εi^2)・・・(v) =σ^2*[i=1,n]Σ(1/n-ci*xバー)*ci・・・(vi) =(-xバー*σ^2)/[i=1,n]Σ(xi-xバー)^2・・・(vii) こうやって計算するみたいんですが、 計算式の(ii),(iii),(vi),(vii)がどうしてそうなるのかわかりません。 どなたか、わかりやすく教えてください!!!

  • 三次補間を使った近似値の求め方

    三次補間でf(x) = sinh(x)の近似を求めたいです。 f(0) = 0.0000、f(1) = 1.1752 f′(0) = 1.0000 、f′(1) = 1.15431 の値が与えられている状態です。 この場合、f(0.5)は三次補間(cubic interpolation)の求め方はこれで正しいのでしょうか? p(x_i) = y_iとp(x_i + h) = y_i + h*y_i'より f(0.5) = f(0+0.5) = y_0 + (0.5)*y_0' = 0.000 + 0.5*1.000 = 0.5 よってf(0.5) = 0.5 補間の手法が沢山あって少しこんがらがっています。 ただ、sinh(0.5) =0.522・・・なので有っていそうなのですが 間違っていたら教えてください><お願いします><

  • プログラムに内容と計算の質問です。

    こんにちは。 補間多項式についての、コンピュータのプログラムの解読に困っています。内容は、 「For the numerical experiments suggested in the computer problems, the following two procedures should be satisfactory. The first is called Coef. It requires as input the number n and tabular values in the array {Xi} and {Yi}. Remember that the number of points in the table is n+1. The procedure then computes the coefficients required in the Newton interpolating polynomial, storing them in the array{Ai}. -------------------------------------------------------- procedure; Coef(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Yi}0:n, {Ai}0:n integer; i,j,n for i=0 to n do {Ai}←{Yi} end for for j=1 to n do for i=n to j step -1 do Ai←({Ai}-{Ai-1})/({Xi}-{Xi-j}) end for end for end procedure Coef --------------------------------------------------------- このプログラムのn=3の時を考えるとき、  (1)j=1のとき、i=3,2,1 <j=1,i=1> {A1}=({A1}-{A0})/({X1}-{X0}) =({Y1}-{Y0})/({X1}-{X0}) <i=1,i=2> {A2}=({A2}-{A1})/({X2}-{X1}) =({Y2}-{Y1})/({X2}-{X1}) <i=1,i=3> {A3}=({A3}-{A2})/({X3}-{X2}) =({Y3}-{Y2})/({X3}-{X2}) (2)j=2のとき、i=3,2 <j=2,i=1> A1=({A2}-{A1})/({X2}-{X0})          ={[({Y2}-{Y1})/({X2}-{X1})]-[({Y1}-{Y0})/({X1}-{X0})]}/({X2}-{X0}) =この式変形をしたいのですが、どのように         すれば良いのかわかりません。ラグランジェ         型になりそうでなりません(泣)         (1)で求めた{A1},{A2},{A3}を使って求めな         いといけないみたいです。 見にくい表し方で申し訳ありません。 アドバイスお願いします!!

  • 補間多項式

    「相異なる点、x_0,x_1,・・・・,x_nに対して、任意の実数y_0,y_1,・・・,y_nがある。そのときp_n+1(x_i)=y_i(i=0,1,・・・,n)を満たす高々n+1次の補間多項式p_n+1がただ一つ存在する。」は真か偽を判定する問題です。考えたのですが偽でしょうか?定義は「与えられた関数y=f(x)に対して、相異なる点x_0,・・・,x_n-1(この点を標本点という)について、y_k=f(x_k),k=0,1,・・・,n-1とおく。このとき高々n-1次多項式p(x)としてp(x_k)=y_k,k=0,1,・・・,n-1となるものがある」理由はやはり高々n+1次というところが定義からづれているからです。しかし根拠が示せないので、アドバイスありましたら嬉しいです・・・

  • ハミルトンに関する質問

    点数nが3以上で、最小次数がn/2以上であるグラフGはハミルトン閉路を持つことを示したい 1,Gの最長路P=X0X1・・・・Xkを考える   (X0,Xi+1)がE(G)に含まれる、(Xi,Xk)がE(G)に含まれる   となるようなiが存在することを示せ 2,上記iに対して、   閉路 Xi,Xi+1,Xi+2・・・・・,Xk,Xi,Xi-1,・・・・・,X0   がハミルトン閉路であることを示せ という問題が出てしまいました 正直証明とか苦手でどうやって手を付けたらいいかわからないので教えてください! よろしくお願いします。