• 締切済み

熱方程式

f(x)∈C^1[0,L], f(0)=f(L)=0とし An=2/L∫f(x)sin(nπx/L)dxとおく Σ|An|<∞を示せ (0から∞) ∵ 部分積分して 2/L{L/nπ∫f´(x)cosnπx/Ldx} =2/nπ∫(f´(x)cosnπx/L)dx そこからシュワルツ&Bessel&パーセヴァルの等式?を上手く使え との助言を教授にいただいたのですが上手いこと解けません 教えてください

  • qurt
  • お礼率37% (3/8)

みんなの回答

回答No.1

以下のごとく、f(x)を区間[-L,L]で定義された奇関数に拡張します。  f(x)= -f(-x) (x in [-L,0])      f(x) (x in [0,L]) すると、f(x)をFourier級数展開したときの係数は、  An=(2/L)∫[0~L]f(x)sin(nπx/L)dx となり、  f(x)=Σ[0~∞]An*sin(nπx/L) (ただし、A0=0) となります。ここで、Parsevalの等式により、  (1/2L)∫[-L,L]{f(x)}^2 dx=(1/2)Σ[0~∞]An^2 < ∞ より、  Σ[0~∞]An^2 < ∞ … (1) がいえます。明らかに、  Σ[0~∞]|An| < Σ[0~∞]An^2 … (2) ですから、(1),(2)式から、  Σ[0~∞]|An| < ∞ がいえます。 こんな感じでどうでしょうか。

関連するQ&A

  • 等式についてです

    周期が2Lの任意の周期関数f(x)を f(x)=a0/2+∑[an・cos(nπx/L) + bn・sin(nπx/L)] とフーリエ展開表示したとき (1) ∫sin(nπx/L)・sin(mπx/L) dx =Lδ ∫cos(nπx/L)・cos(mπx/L) dx =Lδ を示せ (δはクロネッカーのデルタでm=nのとき1、それ以外は0) (2) パーシバルの等式 ∫[f(x)]^2 dx = a0^2/2+∑(an^2+bn^2) が成り立つことを証明せよ という問題が出されました (全部積分範囲は-LからLまでです) (1)はm=nの場合Lになったのですが mノットイコールnのとき  sin(nπx/L)・sin(mπx/L) を -1/2[cos(m+n)π/L-cos(m-n)π/L]として積分していくと [sin(n+m)π-sin-(n+m)π]-[sin(n-m)π-sin-(n-m)π] という部分が出てきました(分数部分はごちゃごちゃになるので省略しました) 初めはnとmはともに整数なのでsin(n+m)πもsin(n-m)πも0になるかな?とか考えたのですが nは整数なのでしょうがmに関してはどうなのでしょうか? (2)についてはf(x)をそのまま代入して計算したのですがそれで良いのでしょうか? 一応両辺が一致しましたがちょっと不安です。 考え方が違う!などありましたらご教授願います。

  • 部分積分とParsevaの等式

    f∈C^3 g∈C^2 f(0)=f(h)=f´´(0)=f´´(h)=0 g(0)=g(h)=0とする このときAn=∫f(x)sin(nπx/h)dx (0からhまで) Bn=∫g(x)sin(nπx/h)dx (0からhまで) はΣn^2|An|<∞  Σn|Bn|<∞を満たすことを示せ おそらく部分積分とParsevalの等式を使うと思うのですが 導き方がわかりません。どなたかご教授いただけませんか?

  • Parsevalの等式と指示された関数を使ってΣ[k=1..∞]1/(2k-1)^2とΣ[k=1..∞]1/k^2の和を求めよ

    [問] (1) 直交系{sin(nx)}は[0,π]で完全とする。Parsevalの不等式は Σ[n=1..∞](b_n)^2=2/π∫[0..π](f(x))^2dxとなる。但し ,b_n=2/π∫[0..π]f(x)sin(nx)dx (2) Parsevalの等式と指示された関数を使って次の級数の和を求めよ。 (i) Σ[k=1..∞]1/(2k-1)^2,f(x)=1 (ii) Σ[k=1..∞]1/k^2,f(x)=x で(2)の求め方が分かりません。 b_n=2/π∫[0..π]1・sin(nx)dx=2/π∫[0..π]sin(nx)dx=2/π[-1/ncos(nx)]^π_0=4/(nπ) Σ[n=1..∞](b_n)^2=2/π∫[0..π]f(x)^2dx=2/π∫[0..π]1dx=2/π[x]^π_0=2/π・π=2 となったのですがこれからどうすればいいのでしょうか?

  • フーリエ級数

    大学からの課題なのですが、数学はあまり得意出ない上、高校で勉強した内容よりもレベルが上の難易度のようで、 色々と頑張っては見たのですが現在の自分の力だけではどうにも解く事が出来ないので、よかったらお教えください。 関数f(x)はxの全ての実数値に対し定義されていて、2πを周期に持つとする。 すなわち、f(x + 2π)=f(x),さらに,積分 ∫-π^π|f(x)|dxが存在するとする。このとき、関数f(x)は 以下のように展開できる。 f(x)=a0/2+Σ[n=1,∞](an cos nx + bn sin nx) (1) ここで、係数an,bn次式で計算される。 an=1/π∫-π^π f(x)cos nx dx (n=0,1,2,....), (2) bn=1/π∫-π^π f(x)sin nx dx (n=1,2,....), (3) さて特に、f(x)={ -1 (-π≦x<0,π=π) +1 (0≦x<π) }    (4) の場合を考える。このとき以下の問に答えよ。 【1】an=0(n=0,1,2,....)であることを示せ。 【2】bnが次式で与えられることを示せ。 bn={ 0 (n=2,4,...) 4/nπ (n=1,3,5,...) } 【3】 【1】式の無限級数の和を、n=5までの和で近似せよ。 すなわち、 f(x)= a0/2 + Σ[n=1,5](an cos nx + bn sin nx)=4/πΣ[n=1,3,5]sin nx/n (5)

  • フーリエ級数展開の問題

    次の関数をフーリエ級数展開せよ。 f(x)=1 (0<x<L/2) -1(L/2<x<L) という問題についての質問です。 これは奇関数と考えてan=0となって bn=2/(L/2)∫sin(nπx/(L/2))dx 積分区間は(0≦x≦L/2) として求めればいいですか? この考えがあっているか教えてください。違ったら、どうするのか教えてください。 ちなみに問題には正弦級数に展開、余弦級数に展開などの指定はありませんでした。

  • 箱型ポテンシャルでのシュレディンガー方程式の規格化

    x<0,L<xでV(x)=∞として、その間はV=0となる箱型ポテンシャルを考える問題です。 固有関数と規格化定数を求めるのが問題なのですが、 変数分離によって答えを出す最後の積分で止まってしまいました。 ψ(x,t)=f(x)g(t) と変数分離して解いて、 f(x)=Acos(nπx/2L) + Bsin(nπx/2L) は出せました。 規格化は∫|f(x)|^2 dx = 1 なので、計算して、 ∫|f(x)|^2 dx = (A^2+B^2)L = 1 ここからどうすればいいのでしょうか? 他の本などを見てもnが偶数と奇数の時で場合分けしていますが、よく分かりません。

  • フーリエ係数の公式

    フーリエ級数の係数 an=(1/π)∫f(x)cos(nx)dx, bn=(1/π)∫f(x)sin(nx)dx 積分区間:0≦x≦2π の導き方を詳しく教えてください。 フーリエ展開の定義式の両辺にcos又はsin(mx)を掛け、両辺を積分するという所まではわかります。 そこから先を”詳しく”お願いします。

  • 自己prこのように書きました。

    「私の長所は興味のある事に探究心と熱意がとてあることです。そして興味のない事にも興味のある事からきっかけを作り結びつけて生かし、頑張りたいという気持ちがあります。私は数学が高校の時からが特に好きでした。そのきっかけは高校時代でふと高校数学で習うシュワルツの積分不等式に何か発見的考察がありそうだと考えたことです。具体的に可算無限次元におけるユークリッド空間上でのシュワルツの不等式とシュワルツの積分不等式がどう繋がっているのかということです。それでまず十分大きなn次元での標準内積の定義を利用しシュワルツの積分不等式を導きたいと考えました。これはn等分による区分求積法とn次元ユークリッド空間におけるシュワルツの不等式を利用してできました。これによりシュワルツの積分不等式とユークリッド空間上のシュワルツの不等式は本質的に考えている事が同じだと感じ、 さらに大学数学を学びそのことに触れてみました。その結果ユークリッド空間上でのシュワルツの不等式は標準内積に対応していると考えると、シュワルツの積分不等式はL2内積に対応していることが得られました。従って標準内積とL2内積は 本質的には同等でユークリッド空間上で標準内積という一つの内積構造から2つの内積を定めたものだと分かりました。さらには今後もユークリッド空間上で標準内積と本質的に異なるような内積構造が存在するのかしないのかもぜひ考えてみたいと思います。このように一つの発想から幅広い内容までに応用できる数学の考え方に感動し、今後も一歩考えたことを数学全般に応用させさらには数学以外のことにも発展させたい考えがあります。」 このような自己prだとどうですか? 私の希望する職は保険会社の保険数理業務です。今年の4月には面接があるのでそれに向けて 頑張りたいです。

  • ベッセルの不等式の証明について

    フーリエ解析におけるベッセルの不等式の証明について、質問です。 私が持っている解析学の参考書によると、 Sn[f]とfとの差の積分を評価すると次のように求める不等式が得られる。 0≦1/(2l)∫(-l,l){|Sn[f](x)-f(x)|^2}dx と書いてあり、ここからの式変形で証明しているのですが、 なぜ、どこからこの差の積分がでてきたのでしょう?? 不等式の証明なので大きいほうから小さいほうを引いて正になることを 証明したらいいと思って挑戦しましたが途中でうまくいきませんでした… やはり参考書の言いなりになるしかないのでしょうか? もしよろしければ証明も詳しく教えていただければ幸いです。 よろしくおねがいします。 P.S ベッセルの不等式 Σ(k=-∞,∞)|Ck(f)|^2 ≦1/(2l)∫(-l,l){|f(x)|^2}dx Ck(f)=1/(2l)∫(-l,l){f(t)*e^(-ikωt)}dt Sn[f](x)=Σ(k=-N,N)Ck(f)*e^(ikωx) 記号など見づらくて申し訳ないです。

  • 極限の問題(収束半径、広義積分)です。

    解いていて、つまずいている問題があります。どうか分かる方お力添え下さい。 (1)Σ(√(n+1)-√n)x**n の収束半径? 補足(Σの添え字nは0から∞です)   (**は2乗を示しています)   (√は()の中にかかっています) ダランベールの収束判定法から 収束半径r=lim(x→∞)an/an+1にしたがって解こうとしてのですがそこで詰まりました。 (2)Σan*(x**n)とΣn*an*x**(n-1)の収束半径が同じであることを示せ。 補足(Σの添え字nは0から∞です)   (**は2乗を示しています)   (*はかけ算を示しています)    (anは数列です) ダランベールで解こうと思ったのですがxの肩のn-1が定理と違うのでこれ以上進みません。 (3)∫sin(1/x)dx(0<x≦1) ∫(x(x-1))**(-1/3)dx(2≦x<∞) ∫1/xdx(-1≦x≦1) は収束、発散? 広義積分なので∫の中の関数より大きい関数で押さえれば収束が示せると思ったのですが適当な関数が見つかりません。