• ベストアンサー

逆関数についてなど・・・

y=f(x)はy=g(x)はお互いに逆関数であるとします。そうするとf(g(a))=aと書いてありましたどうしてでしょうか。logと指数で実際に確かめてみたところ成り立ちはしましたが、理由がいまいちわかりません。 またすべての関数でg(f(c))=cも成り立ちますよね。 証明とかではなく日本語的な説明とかで教えてください。逆関数とはxとyを入れ替えたものなのでわかった起臥したりもしますが、明確にはわかりません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#47975
noname#47975
回答No.3

逆関数とはxとyを入れ替えたものなのでわかった起臥したりもしますが、明確にはわかりません。 それなら、関数y = f(x)について、x = aのとき y = f(a) その逆関数 y = g(x)について、 x = f(a)のとき、y = a となる事は分かりますよね? そうすれば、g(f(a))= aになるじゃないですか? 逆に、y = g(x)について、x = aのとき y = g(a) y = f(x)については、x = g(a)のとき、y = aに なります。すると、a = f(g(a))になるのは分かりますね。 落ち着いて考えて見てください。

その他の回答 (3)

noname#101087
noname#101087
回答No.4

>すべての関数でg(f(c))=cも成り立ちますよね。 厳密にいうと、関数 Y=f(X) の逆関数 X=g(Y) が定義できるのは、   X1 とX2 とが異なるとき、f(X1) と f(X2) も異なる場合 なのです。 この要請は、関数の定義に由来します。   Y=f(X) にてある X を与えたとき、Y が一意的に決まる という要請です。 はじめの条件を満足していないと、逆関数 X=g(Y) にて Y が与えられたとき、該当する X が複数個あり得ますから、 逆の「関数」としては通用しなくなるからです。 このような条件を満足しておれば、心して「関数」として取り扱え、g(f(c))=c が成り立ちます。

  • F_P_E
  • ベストアンサー率43% (26/60)
回答No.2

はじめまして。 言葉でがんばって説明してみます。 関数というのは、要は、f(x)という関数があったとき、xという数が関数fを介してf(x)に写ったということです。つまり、 x → f(x) 同様に関数g(y)があったとすれば、 y → g(y) さて、f(x)とg(x)は逆関数の関係にあるのだから、y=f(x)としてしまえば、 x → f(x) = y → g(y)=g(f(x)) これから、最初の矢印と最後の矢印は全く正反対の操作をしているので(関数f,gは逆関数の関係にあるから)、xと終着点のg(f(x))は同じであるはずです。だから x = g(f(x)) が成り立ちます。 少し分かりにくいかもしれません。文句があったら遠慮なくどうぞ^^

dandy_lion
質問者

補足

みなさまありがとうございました。具体例なども参考になり面白かったです。しかし理解はできますが、いまいちピンときません。半暗記事項だと思うべきなのでしょうか。 no2さんこれは写像(?)的な考え方でしょうか。また写像(?)は行列の1時変換を勉強する上で高校生でも勉強したほうがいいのでしょうか。

  • mcurry
  • ベストアンサー率28% (45/158)
回答No.1

x,y平面にグラフを書くとすれば、x,yを使って、関数を表すのだと思いますが。別に、x,yじゃなくても、ちがう文字つかってもいいですよね。m=f(n),u=g(t) でも。 日本語的な?説明すると 逆関数っていうのは、 (1)100円いれると ジュースが出る、自動販売機f  ジュース=f(100円) (2)ジュース入れると、100円が出る。逆自動販売機g   100円=g(ジュース) よって 100円=g(ジュース)=g(f(100円)) ほら、こんなかんじでOKですか?

関連するQ&A

  • 逆関数と共有点の問題

    こんばんは。以下の問題で悩んでいます。 ----------------------------------------------------- f(x) = e^(x-c) (cは定数) の逆関数をg(x)とする。 (1) g(x) を求めよ。 (2) y = f(x) と y = g(x) のグラフの共有点の個数を求めよ。 ----------------------------------------------------- (1) y = e^(x-c) を x = の式に直すことから始めようと思ったのですが,まずここからできません。 関数の値域は,指数関数ですから y > 0 かな,と分かるのはこれくらいです。 両辺に底がeの対数をとっても進まないし…どうすれば良いでしょうか。 (2) これは y = x との交点を求めれば良いので,(1)が分かればできるような気がするのですが…。  詳しい方おりましたら,おしえてください!

  • この逆関数の求め方は間違っていますか?

    「y=sinhx={e^x-e^(-x)}/2の逆関数を求めよ」 という問題が分かりません. 与式を変形して2y=e^x-e^(-x) e^2x-2ye^x-1=0 e^x>0を考慮して,解の公式よりe^x=y+√(1+y^2) 両辺の対数をとって(表現が間違っているかもしれません) x=log{y+√(1+y^2)} yを変数xについての関数とするために入れ替えて y=log|x+√(1+x^2)| (与式の値域より右辺の真数>0となるよう,絶対値記号を用いています.) とすれば解答と一致します. ですが,次の方法で解こうとすると答えが変わってしまいます. y=f(x)=sinhx={e^x-e^(-x)}/2 f'(x)={e^x+e^(-x)}/2>0より,f(x)は増加関数 逆関数をy=f^{-1}(x)とおきます. 逆関数の導関数[f^{-1}(x)]'=2/{e^x+e^(-x)}=2e^x/(e^2x+1)=2(e^x)'/(e^2x+1) この導関数を積分してf^{-1}(x)=2tan^{-1}(e^x)+C 関数y=f(x)は(0,0)を通るから,逆関数も(0,0)を通る.このことからC=-π/2を得る. よってf^{-1}(x)=2tan^{-1}(e^x)-π/2 ですが,これは先ほどの解答とは異なる気がします. 後半の解法はどこが間違えているのですか?

  • 逆関数・合成関数

    逆関数、合成関数の観点から次の式を説明せよ。 (1) log e^x=x (2) e^(logx)=x やってみました。 (2) y=a^x(-∞<x<∞)とする。   xについて解くとx=loga y (y>0) ここでx,yをいれかえるとy=loga x(x>0) つまり、y=a^x(a>0,a≠1)とy=loga x(a>0,a≠1)は   互いに逆関数の関係にある。   よって、a^(logy)=y(y>0) a=eのとき、e^(logy)=y yにxを代入してe^(logx)=x こんなんでどうでしょうか???それと(1)はどうすれば良いのでしょう?

  • 逆関数の導関数

    dy/dx=1/dx/dy ↑より、y=f(x)の逆関数x=g(y)の微分可能性については、逆関数を具体的に求めなくても判定できる。 すなわち  x0⇔f(x0) (→がf,←がg) (適した記号が見つからなかったので、同値記号で勘弁してください。) 「f'(x0)≠0ならばfの逆関数gはf(x0)で微分可能で g'(f(x0))=1/f'(x0) であることを示してる。」 と書いてあったのですが、よくわかりません。 なぜ、そのようなことがいえるのでしょうか? 全体的にわかりません、解説よろしくお願いします。

  • 関数

    関数 y=f(x)とx=f(y)は関数として、等しいというのは合っていますか? また、(1)f(x)=e^x/(e^x+1)のときy=f(x)の逆関数y=g(x)を求めよ。 (2)(1)のf(x)、g(x)に対し、 (A)∫(a~b)f(x)dx+∫(f(a)~f(b))g(x)dx=bf(b)-af(a)をしめせ。 (解答) f(x)の値域は、0<y<1{(e^x)+1}y=e^x (1-y)e^x=y⇔x=log(y/1-y) xとyを入れ替えて、g(x)=log(x/1-x) (2)I=∫(f(a)~f(b))g(x)dxとする。 f(x)はg(x)の逆関数だから、y=g(x)より、x=f(y) dx=f‘(y)dy また、g(f(a))=a,g(f(b))=bとあるのですが、 これらは、y=g(x)とx=f(y)を合成したものだ、としても、本質的には、問題ないですよね

  • 逆関数

    逆関数の場合、互いに直線y=xに感じて線対称のグラフになると思うのですが、これはなぜでしょうか? y=a^xとy=log(a)xの関係とかなら一応わかるのですが、一般的な話になるとどうしてなのかよくわかりません。 簡単なことかもしれませんが、ヨロシクお願い致します。

  • 逆関数の微分可能の証明について

    逆関数の微分可能性についての質問なのですが 1変数において y=f(x)が微分可能(何回でも)だとして 逆関数x=g(y)が微分可能(何回でも)になる という証明は逆関数が微分可能ということを証明することで f(x)が何度でも微分可能なので逆関数も何回でも微分可能と証明することができたと言えるのでしょうか? 何回でも微分可能の何回という点を証明する方法がよくわからないのですが教えていただけないのでしょうか.

  • 逆関数について

    題名の通りなんですが逆関数というものが教科書を読んでも理解できません。例えばy=3x-4の逆関数はこの式をx=○○の式に書き換えてから、xとy入れ替えるというのは分かります。ですが、 y=tanxの逆関数をy=g(x)とするとき、g'(1)の値を求めよ。 という問題で解答に y=tanxの逆関数y=g(x)ではx=tanyであるから... という説明があり何をやっているのかさっぱり分かりません。y=tanxをx=○○の式に変換するのは不可能ですよね?逆関数の意味を間違って捉えてるからかもしれませんが、先へ進めません。アドバイスお願いします。

  • 逆関数を利用した定積分の計算

    参考書の模範回答を読んでも分からなかったので質問します。 f(x)=log[{-1+√(1+4x)}/2]とおき、関数y=f(x)(x≧2)とその逆関数y=g(x)(x≧0)について考える 問1:g(x)をxの式で表せ 問2:a≧2のとき、∫[2,a]f(x)dx=af(a)=∫[0,f(a)]g(x)dxを示せ 問1は分かりました。 g(x)=e^(2x)+e^x(x)(x≧0) 問2について(模範回答より) y=f(x)に対し、x=g(y)であるからdx=g'(y)dy f(x)はx≧2に於いて増加関数である。 a≧2のとき、xとyの対応は次のようになる x:2 --> a y:0 --> f(a) ∫[2,a]f(x)dx = ∫[0,f(a)]y*g'(y)dy = [y*g(y)]_|y=0,f(a)|-∫[0,f(a)]g(y)dy = f(a)*g(f(a))-∫[0,f(a)]g(y)dy ・・・(1) = a*f(a)-∫[0,f(a)]g(x)dx ・・・(2) なぜ(1)から(2)が導かれるのか教えてください。 (1)の∫[0,f(a)]g(y)dyが(2)の∫[0,f(a)]g(x)dxになるのは おそらく「定積分は、関数の形と上端、下端の値で決まり、変数に取った文字には無関係」、つまり 「∫[a,b]f(x)dx = ∫[a,b]f(t)dt」から導かれるのでしょうが(間違っていたら指摘してください)、 (1)のf(a)*g(f(a))が(2)のa*f(a)になるのが理解できません。 おねがいします。

  • 逆関数の意義

    関数y=sinx(-π/2≦x≦π/2)の逆関数をg(x)とする。 I=∫[0→1]g(x)dx を求めよ。 という問題なんですが、もちろんこの場合逆関数は簡単には求まりませんよね?といいますか、傍用問題集に載ってるような計算で求められる逆関数はむしろ特別な場合をやっているに過ぎないと教わりました。 さて本問についてですが、さっぱり分からなかったので解説を受けたのですが、その説明はこういうものでした。 「与えられた関数にx1という値を入れるとy座標はy1(=sinx1)になるとする。このとき逆にy1を入れてx1に至る関数を本問での逆関数と呼ぶ。これをx=g(y)とする。このときグラフ自体はまったく同じものであるが、関数はxを入れてyに至るというのが一応の決まりとなっているのでxとyを入れ替えてy=g(x)とする。したがってもともとyを入れてxに至るのが逆関数であったのでIは次のように書き換えられる」 I=∫[0→1]g(y)dy という説明でした。はっきり申しますとさっぱりこの説明の意味が分かりません。こんな曖昧な状態では全く応用が利かないです。もちろん上のように書き換えられたならば積分は計算できるのですが、そこまでのプロセスの理解はやはり皆無です。そもそも教科書にしてもチャートなどの問題集にしても、逆関数を求めるだけという単純な計算問題しか書かれていないのでその本質がまったく見えません。逆関数が試験にでるというのはまだ一度も見たことは無いのですが、一応受験範囲が(3)Cだけですのでここもしっかり理解しておきたいです。上の解説文などは完全に無視していただいて構いませんのでアドバイスよろしくお願いします!