逆数補間についての内容です。
こんにちは。
私は、大学生で、補間についての勉強をしているものです。今回、始めて、洋書を読むことになり苦戦しております。以下の内容はどういったものなのでしょうか?アドバイスをいただきたいと思い、書かせてもらいました。
_______________________________________________________________
[Inverse Interpolation]
A process called inverse interpolation is often used to approximate an inverse function. Suppose that values {Yi}=f({Xi}) have been computed at X0,X1,...,Xn.
Using table
Y ; Y0 Y1 Y2 ......Yn
X ; X0 X1 X2 ......Xn
we form the interpolation polynomial
p(y)=Σ(i=1→n)CiΠ(j=0→i-1){Y-Yj}
The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef.
Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0). For a concrete case, let the table of known values be
Y;-0.5789200,-0.3626370,-0.1849160,-0.0340642,0.0969858
X; 1.0 , 2.0 , 3.0 , 4.0 , 5.0
The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is
p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086
and p(0)=4.247470086. Only the last coefficient is shown with all the digits carried in the calculation, for it is the only one needed for the problem at hand.
________________________________________________________________
自分で計算しても、p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 となりません(泣)
補足
NOD32と言うソフトでpast3.Aと言うウイルス3個と亜種と言うウイルス5個ぐらいレジストリに組み込まれてましたが亜種とは悪いのでしょうか? あと不可視のファイルがロックされて検査不能。 前spybotのソフトでスパイチェックしましたがスパイ見つからなくてad-AwareSEと言うソフトで結構見つかりました。ありがとうございます。