• ベストアンサー

絶対値つきの定積分の問題

∫|sin x|dx  範囲は[-π,π] =2∫|sin x|dx 範囲は[0,π]  ←範囲が[-π,π]で、|sin x|は偶関数なので。 =2∫(sin x)dx + 2∫(sin x)dx 範囲は[0,?]と[?,π] =... 範囲が分かりません。 絶対値がある場合の積分の計算は、場合分けをすると思うのですが その場合分けの考え方が分かりません。 答えは「4」と分かっているんですが、途中式がないため答えまでたどり着きません。 「場合分けの考え方」と「途中式」の説明をお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • ccyuki
  • ベストアンサー率57% (81/142)
回答No.1

y=|sin x| のグラフを考えます。   まず y=sinx のグラフは -π≦x≦π の範囲で  書けますか? y=|sin x| のグラフは このグラフのx軸の下にある部分(つまり-π≦x≦0の部分)をx軸の上側に折り返したものです。  これさえわかれば ∫|sin x|dx  範囲は[-π,π] =2∫sin xdx 範囲は[0,π]   がわかりますよね。 絶対値が取れれば計算できるので ∫|sin x|dx  範囲は[-π,π] =2∫sin xdx 範囲は[0,π]  =2[-cosx]  範囲は[0,π] =2(-cosπ+cos0)=4    もっと細かくしたいのなら ∫|sin x|dx  範囲は[-π,π] =2∫sin xdx 範囲は[0,π]   =4∫sin xdx 範囲は[0,π/2]  とも出来ますがあまり意味がないと思います。 いずれにしてもグラフでどの部分の面積を求めているのかを考えれば良いと思います。

snow_drop11
質問者

補足

回答ありがとうございます。 疑問があるので、もう1つ質問をさせて下さい。 sin xのグラフは、-sinπ=0, -sinπ/2=-1, sin0=0, sinπ/2=1, sinπ=0 になり、|sin x|のグラフでは、-sinπ/2=-1が-sinπ/2=1になることまでは分かります。 絶対値を取る時、sinxのグラフを見ると範囲の[0,π]の所には 負の数がないから計算をするときは絶対値を取って、 >=2[-cosx]  範囲は[0,π] と、このようになるんですか。 例えば ∫|cos x|dx  範囲は[0,π] =∫(cos x)dx + ∫(cos x)dx  範囲は[0,π/2],[π/2,π] ←cosxのグラフでcos2/πから負の数になっているから? =[sin x] + [sin x]  範囲は[0,π/2],[π/2,π] =(sinπ/2 - sin0) + (sinπ - sinπ/2) =0 このように、グラフで負の数がない場合は、絶対値をのけるだけで、 負の数がある場合は、場合分けを上のようにすればいいのでしょうか。 重ね重ねですが、お願いします。

その他の回答 (1)

  • rtz
  • ベストアンサー率48% (97/201)
回答No.2

>∫|cos x|dx  範囲は[0,π] >=∫(cos x)dx + ∫(cos x)dx  範囲は[0,π/2],[π/2,π] ←cosxのグラフでcos2/πから負の数になっているから? >=[sin x] + [sin x]  範囲は[0,π/2],[π/2,π] >=(sinπ/2 - sin0) + (sinπ - sinπ/2) >=0 2行目は正しくは∫(cos x)dx [0,π/2] + ∫(- cos x)dx [π/2,π]です。 単純なミスだと思いますが。 π/2~πの範囲でcos xが0以下になるのでここの部分には - を付けます。 よってその先も =(sinπ/2 - sin0) + (-sinπ + sinπ/2) =2 が正解です。

snow_drop11
質問者

お礼

回答ありがとうございます。 ご指摘の通り、2行目は >∫(cos x)dx [0,π/2] + ∫(- cos x)dx [π/2,π] ですね。 絶対値がついた場合の場合分けを理解することができました。 丁寧な説明ありがとうございました。

関連するQ&A

  • 積分 絶対値付き 問題

    積分 絶対値付き 問題 ∫[-1~2]|2-x-x^2|dxについて。 ∫[-1~2]|2-x-x^2|dx =∫[-1~1](2-x-x^2)dx+∫[1~2](-(2-x-x^2))dx 考え方は、 -1<x<1のとき2-x-x^2>0より|2-x-x^2|=2-x-x^2 1<x<2のとき2-x-x^2<0より|2-x-x^2|=-(2-x-x^2) この解き方であっていますか? また、今回は積分範囲を分けるのが簡単ですが、積分範囲分けが難しい場合はやはりグラフを描いて考えるのでしょうか? ご回答よろしくお願い致します。

  • 絶対値のついた定積分の問題です。

    絶対値のついた定積分の問題です。 y=1/10a∮[0→10a]bsin(2πx/a)dx という問題なのですが、答えはy=b/10πなんですが、合いません。 私の考えとしては、積分範囲を[0→a/2]にしてそれを20倍すればいいのかなと思うのですがこのやり方だと答えが合いません。 このやり方が間違っている理由と、正しい計算方法を教えて下さい。 よろしくお願いします。

  • 絶対値 付き 積分 問題

    絶対値 付き 積分 問題 ∫[0→2]|(x^2)-1|dxについて、 f(x)=x^2-1とすると、f(x)=0はx^2-1=0より x=±1である。 積分範囲は0≦x≦2であるから、x=±1よりx=1で 積分範囲を分ける。 x<1のとき、|(x^2)-1|=-((x^2)-1)=(1-x^2) x>1のとき、|(x^2)-1|=(x^2)-1 ∫[0→1](1-x^2)dx+∫[1→2](x^2)-1dxとして解けます。 ここで疑問なのですが、∫[-2→2]|(x^2)-1|dxであった場合は 積分範囲をどのように分ければ良いのでしょうか? 以上ご回答よろしくお願い致します。

  • 三角関数の逆関数微分および置換積分の際の絶対値について

    こんにちは。 とある問題集の、 ∫{1 / ( (1-x^2) * (x^2+1)^(1/2) )}dx を計算せよ、という問題についていです。 解答を見たところ、x=tanθと置くそうなのですが、その計算において (x^2+1)^(1/2) = ((tanθ)^2+1)^(1/2) = 1/cosθ としているところに 疑問を持ちました。 思うに、-π/2<θ<π/2 などの条件があるなら格別、そうでなければ (x^2+1)^(1/2) = 1/|cosθ| と絶対値を付けるべきではないですか? この問題集では、たとえば y = arcsin x でのdy/dx を求める際も、 siny = x ⇔ dy/dx * (cosy) = 1 ⇔ dy/dx = 1/cosy = 1/(1-(siny)^2)^(1/2) = 1/(1-x^2)^(1/2) などと絶対値を考慮せず計算している場合があります。 (おそらく、前者の積分問題に関しては)絶対値で場合分けしても、 答えは同じになると思うので、まあ省略したと納得できなくもないですが、 後者の場合だと絶対値で場合分けすると答えが変わってくるので 問題になります(そもそもyがxの関数でないことが問題なのでしょう)。 このように、三角関数の逆関数微分、および置換積分の場合は、絶対値 符号は何も言及せずに外してもいいのでしょうか? 大学院受験での解答を前提として教えていただきたいです。

  • 定積分の問題で解けない問題があります。

    広義積分 ∫logsin(x) dx = -Pi/2 log(2) (積分範囲 0,Pi/2) が解っている前提で、  ∫(x^2)log(x)/√(1-x^2) dx (積分範囲 0,1) これは、x=sin(x)と置いて部分積分でガチャガチャやって計算できたのですが、  ∫log(1+x)/1+x^2 dx (積分範囲 0,1) ∫(x-(Pi/2))tanx dx (積分範囲 0,Pi/2) ∫log(1+cos(x)) dx (積分範囲 0,Pi) 等の計算がうまくいきません。 自分としては、最初の問題で 1/√(1-x^2)=(arcsinx)' というのが使えそうな気がしてならないんですが・・・ 解る方がいればヒントだけでもいいので教えていただければ、と思い投稿しました。 よろしくお願いします。

  • 積分の問題です

    こんにちは。 ∫[-1,1] {x*(4x^3 - 3x)}/√(1-x^2) dx を計算せよ という問題の答えを教えていただきたいです。 自分でやってみたところ、 x=cosθ(0≦θ≦π)と置いて、4x^3-3x=cos3θとなることを利用すると、与式は ∫[0,π] cosθcos3θdθ  =3∫[0,π]sinθsin3θdθ (部分積分) =9∫[0,π]cosθcos3θdθ (もう一度部分積分) となるため、結局答えが0になってしまうのですが、これで合っているでしょうか? どうぞよろしくお願いします。

  • 定積分の問題

    f(θ)=∫|(√1-x^2)-sinθ|dx 積分範囲は0~1、0<θ<π/2 とするとき、f(θ)を簡単な式で表わせ。 お願いします。

  • 積分の問題なのですが解き方が分かりません。

    1)はΓ関数を、2)、3)はΒ関数を用いて次の積分を表せ.という問題なのですが、途中の計算が分かりません。何方か分かる方がいらっしゃったら何卒解説をよろしくお願いいたします。 1)∫[0→∞]  x^4(1+x^2)/(1+x)^12 dx 2)∫[α→β] (t-α)^p (β-t)^q  dt (α<β、p>-1、q>-1) 3) ∫[-π/2→π/2] (1-sinθ)^p  dθ (p>-1/2)

  • 3次の定積分の問題です。

    (1) ∫(x-α)(x-β)g(x) dxの定積分(区間:-1→1)が0となるときのα、βを求めよ。    ただし、g(x)は1次関数である。 (2) ∫f(x) dx = f(α)+f(β) (積分区間:-1→1)を証明せよ。    f(x)は3次関数である。 という問題です。 (1)はg(x)=ax+bとおいて計算してみたのですが、  a≠0よりα+β=0  b≠0のときα=1/√(3)、β=-1/√(3)      またはα=-1/√(3)、β=1/√(3) というスッキリしない回答になってしまいました。 また、(2)を見据えた答えにならずよくわかりません。 途中計算も含めて御解答していただけると助かります。 よろしくお願いします。  

  • 微分積分の問題です

    以前質問したことがある問題がありますが、どうしても分からないので途中式も含め教えて下さい (1)次の関数について()内の点における値と微分係数を求めよ (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) (2)次の関数の第二次導関数を求めよ y=2(x-1)e^x (3)次の定積分の値を求めよ (1)∫上が1下が-1 (x+1)/(x^2+1)dx (2)∫上が2π下がπ sin{(x-π)/3}dx (3)∫上が4下が0 (x-1)√(2x+1)dx 宜しくお願いします。