• ベストアンサー

ベクトル解析

Rossanaの回答

  • ベストアンサー
  • Rossana
  • ベストアンサー率33% (131/394)
回答No.4

あっ境界条件『円の中心でu(x,y)=0』はいらないかも.見落としていました!!『単位円内部で有界な解u(x,y)』と書いてありますね. R=Ar^(√k)+Br^(-√k)=Ar^(√k)+B/r^(√k) r→0でuが有界となるにはRも有界.このとき,B≠0であるとするならば,RはB/r^(√k)の項により発散してしまう.だから,B=0でなければなりませんね!! u=RΘ={Ar^n}{c1sin(nθ)+c2cos(nθ)} =r^n{c1Asin(nθ)+c2Acos(nθ)} c1A=b_n,c2A=a_nとおいて重ねの理で u(r,θ)=Σ[n=1~∞]r^n{a_ncos(nθ)+b_nsin(nθ)} あとは計算すればa_n,b_nがf(x,y)=f(θ)で表現でき,u(r,θ)が求まりますね!というわけで境界条件『円の中心でu(x,y)=0』の追加条件は不要でしたね.

spider1984
質問者

お礼

どうもありがとうございました!! 丁寧な計算や解説とても参考になりました!!

関連するQ&A

  • ラプラス方程式の境界値問題

    ∂^2u/∂x^2 + ∂^2u/∂y^2 + ∂^2u/∂z^2 = 0  in Ω ∇u・n = 0  on Ωの境界 ( nは境界の外向き法線ベクトルです) Ωを3次元空間内の有界領域としたときに、上のラプラス方程式の境界値問題の解はなぜ1つではないんでしょうか? すいませんが教えてくれませんか?

  • ベクトル場の解析についてです

    f(x,y)=[-y/(x^2+y^2) , x/(x^2+y^2)]で与えられる二次元のベクトル場がある時 (1) 単位円上の点P(がx軸とπ/4の角度を成す原点からの直線が単位円と交わる点、第一象限) におけるf(x,y)を図示せよ (2) ベクトル場f(x,y)の発散を求めよ(原点は除く)   (3) 単位円に沿ったf(x,y)の反時計回りの積分 ∫f(x,y)・ds を求めよ    (dsは線素ベクトル、・は内積を表す) という問題を出され、解いたところ次のような答えになりました (1)は dx/dt=λ(-y/x^2+y^2) dy/dt=λ(x/x^2+y^2)として計算、x^2+y^2=1 (単位円ですよね) (2)はdivなので ∂f/∂x + ∂f/∂y = 2xy/(x^2+y^2)^2 - 2xv/(x^2+y^2)=0 (3)は -∫y/(x^2+y^2) dx -∫x/(x^2+y^2) dy     x=acosθ y=asinθ とおいて dx=-asinθdθ dy=acosθdθ          これを代入して計算すると-π/2となりました これらは正しいのでしょうか?

  • コンピュータ断層撮影(CT)の解析的意味とは

    コンピュータ断層撮影というのがありますが、数学的にはどう解析をしているのでしょうか? 例えば、定義域を円板{(x,y)|x^2+y^2≦r^2}と考え、密度関数みたいなもの、つまり、2変数関数 z=f(x,y) を考えます。 定義域を原点を中心にθ回転(0≦θ<2π)したものについて、そのy座標を固定し、x座標を動かしたときの積分の値が観測されたとします。 そのときもとの、z=f(x,y)を求めるにはどうしたら良いのでしょうか? または、有界領域上の2変数関数z=f(x,y)において、それは未知だが、任意の直線における線積分の値が既知だったときに、その積分値からもとのz=f(x,y)を求めるにはどうしたらよいのでしょうか? あいまいで申し訳ないですが、設定は適宜変更されてかまいません。

  • 偏微分方程式の数値解法

    偏微分方程式の込み入った質問です。 2次元(x,y)の空間で2つの関数f(x,y),g(x,y)を考えます。 そこで、それぞれにラプラス方程式を立てました。 fxx+fyy = 0  (1) gxx+gyy = 0 (2) です。これは境界値問題で、差分式からSOR法を使って収束計算によって数値解を求めることができます。f, gはそれぞれ独立という形にはなります。 そこにもう1つ式が出てきました。 fxfy + gxgy = 0 (3) というものです。f,gをx,yで1回微分してできる式です。 都合3つの式が出てきました。 この数値解を求めるにはどのような方法があるでしょうか。 数値解ですから近似解です。 3つ目の拘束条件の下でのラプラス方程式とみると、ペナルティ関数とかラグランジュの未定係数法とかいろいろあるかもなと思いますが。 3つ目の式は完全に満たすというより、できるだけ満足するようにしたいというものです。 よろしくお願いします。

  • ベクトル解析の問題です。

    以下の問題が分かりません。 x^2+y^2+z^2<1とx+y+z<1で定義される領域をVとする。Vの境界をSとし、Sの平らな部分をS_1とする。 (1)S_1の中心の座標と半径を求めよ。 (2)∫_C(ydx+zdy+xdz)を求めよ。ここでCはS_1の円周である。ただし、Cはx,y,z軸の順で交わるように定める。

  • 数値解析

    sin(xy)=0.51x0.32y(0<x<1.2)において定義される関数y(x)は1.0<x<1.2において最小値を取る。 (i) yが最小値を取る点xとそのときの最小値yは次の2次元連立方程式の解であることを示せ sin(xy)-0.51x-0.32y=0 ycos(xy)-0.51=0 このような課題が出たのですがまったくわかりません。 どなたか、わかりやすく教えて頂けないでしょうか? お願いします。

  • ラプラス方程式の解析解

    電磁気学を勉強しているのですが,分からないことがあるので質問させてもらいます. 静電場内にある電荷が作る電位分布を示す方程式としてラプラス方程式(∇^2*V=0)があると思います. ラプラス方程式とポアソン方程式の違いまでは理解できていると思います. 2次元のラプラス方程式は以下の式を変数分離法を用いて解くことで,直交座標系や球面座標系として考えることで,解析解が得られると理解しています. (ここまではたどり着くことが出来ました) (∂^2/∂^2x)V(x,y)+(∂^2/∂^2y)V(x,y)=0 分からないのは,ここから実際の電位分布を求める方法です. 具体的には,xy平面上の原点にポテンシャルV0がある場合,このV0による電位分布を求めることが出来ません. 直交座標系で考えると一般解は,A,B,C,D,kを定数として,次のようになると思います. V(x,y)=(A*exp(kx)+B*exp(-kx))*(Csinky+Dcosky) 境界条件から未知定数を求めたいのですが,うまくいきません・・・. 原点にポテンシャルがあるので,x→∞でV→0,y→∞でV→0,x=0,y=0でV=V0が境界条件になると思ったのですが,y→∞で(Csinky+Dcosky)は0に収束しません. 境界条件の設定が間違っているのでしょうか? 数値解では原点にポテンシャルを設定している解説は見つけられたのですが,解析解では資料がなく,どうすればいいか困っています. すみませんが,教えてください.

  • 法線ベクトルについて

    Ω⊂R^2を有界領域とします。 このとき 「境界∂Ωが滑らかであると仮定すると、x∈∂Ωにおける 外向き単位法線ベクトルV(x)はxの滑らかな関数である」 これは何故成り立つのでしょうか? どなたか解説または証明をお願い致します。

  • 大至急お願いします!解析の問題です!!!!

    大至急御願いします!解析の問題です!!!! 分かる範囲でいいので、なるべく詳しくお願いします! 1問でもかまいません!よろしくお願いします! 1. (1)R^2のノルム||・||を一つ選んで、その選んだノルムの定義を記せ。 (2)pを正の定数とし、B={y^→(yベクトル)∈R^2;||y^→||≦p}とおく。 ある定数M>0が存在し、任意のy^→=(y1),z^→=(z1)∈Bに対して (y2) (z2) |y1^2-z1^2|≦M||y^→-z^→||,|y2^2-z2^2|≦M||y^→-z^→||,|y1y2-z1z2|≦M||y^→-z^→|| が成り立つことを示せ。 (3)Iを有界閉区間とし、a(x),b(x),c(x),d(x)はI上の連続関数とする。R^3の領域 E=I×B={(x,y^→);x∈I,y^→∈B} において、微分方程式 (y1)´=(a(x)y1^2+b(x)y2^2) (y2) (c(x)y1y2+d(x) ) の解は、I×B内に任意に与えられた初期条件に対して一意的に存在することを示せ。 (4)前問の微分方程式について、 I×R^2={(x,y^→);x∈I,y^→∈R^2} においても初期条件に対する解の一意性が成り立つことを示せ。 2. IをRの区間とする。f^→(x,y^→)はI×R^nの連続関数とする。 微分方程式y^→=f^→(x,y^→)については、初期条件に対する解の一意性が成り立つと仮定する。 (1)I×R^n上で||f^→(x,y^→)||が有界であるとき、この微分方程式の任意の解はI全体に延長可能であることを示せ。 (2)ある定数M>0が存在して、I×R^n上で ||f^→(x,y^→)||≦M√||y^→|| が成り立つとき、やはりこの微分方程式の任意の解はI全体に延長可能であることを示せ。 3. 微分方程式(y^→)´=f^→(x,y^→)について、初期条件に対する解の一意性が成り立っているとする。 この微分方程式の、初期条件y^→(a)=b^→をみたす極大延長解を p^→(x,a,b^→)で表し、その定義される区間をIとする。このとき、任意のa1∈Iに対して、 p^→(x,a1,p^→(a1,a,b^→)=p^→(x,a,b^→) (任意のx∈I) が成り立つことを示せ。 よろしくお願いします!!!!!

  • 1次関数

    半径がxの円を考える。円周率はπとする。 (1)この円の円周の長さをyとするとき、yをxの式で表せ。また、この関数の定義域を答えよ (2)この円の面積をyとするとき、yをxの式で表せ。また、この関数の定義域を答えよ