• 締切済み

無限和と留数定理について

無限和を留数定理によって証明するやり方がわかりません。本には 1-1/3+1/5-1/7+...=1/2Σ(m=0,±1,...){(-1)^m/(2m+1)}=lim(n→∞)∫i/4*1/z*exp(izπ/2)/{exp(iπz)+1}dz と書いてあるのですが、この間の式の変形の意味がわからないのです。どなたか教えてください。よろしくお願いします。

みんなの回答

  • yaksa
  • ベストアンサー率42% (84/197)
回答No.1

積分経路がわかりませんが、式の形をみると、 z=2m+1 (m:整数) が積分閉路の中に入っていればよさそうです。 そうすると、 特異点は、z=2m+1 (m:整数) で全部1位の極です。 z=2m+1の留数は、  Res = (-1)^m/(2m+1)/4πi なので留数定理より、中辺と右辺の等号がなりたちます。

関連するQ&A

  • 積分値を留数定理で求める方法

    問題:次の積分の値を求めよ ∫exp(-z)/(z(z-1)(z-3))dz 但し、複素積分は円周 |z|=2 上半時計回りに行うものとする。 上の問題を、留数定理を用いて以下のように解きました。 C : z=2×exp(iθ) 極は0、1、3でそれぞれ1位であり、 Res[f(z),z0]=lim[z→z0] (z-z0)f(z) であるから R(1)=(1/3-1/12)×exp(-1) R(3)=(1/9-1/4)×exp(-3) R(0)=1/2-1/18 よって、留数定理より、 与式=2πi(R(0)+R(1)+R(3)=2πi(4/9 - (1/4)×exp(-1) - (5/36)×exp(-3)) 質問したいことは、 1、この問題を留数定理で解く方針は正しいか 2、特異点が極かどうか(極でないとRes[f(z),z0]=lim[z→z0] (z-z0)f(z)が使えないので) 3、留数定理の使い方が正しいか 4、上記の解答は正しいか です。回答よろしくお願いします。

  • 留数定理を用いた有理関数の無限積分

    教科書の例題に ∫[-∞→∞] 1/(x^2+1)dx という問題の解き方があります。そこには、 実軸上の線分[-r,r]と、原点を中心とする上半円Cr:|z|=rを結ぶジョルダン曲線Cを考える。無機は正方向とする。留数定理によれば ∫[C] f(z)dz = ∫[-r→r] f(x)dx + ∫[Cr] f(z)dz = 2πiR(i) (ただし、R(i)はz=iにおける留数) である。R(i) = 1/2i であるから、 ∫[-∞→∞] f(x)dx = π-lim[r→∞] ∫[Cr] f(z)dz の形に書けるから、最後の項=0 が示されればよい。 と書いてあります。でも、私にはなぜ 最後の項=0 を示す必要があるかがわかりません。留数定理より、 与式 = 2πiR(i) = π と求めてはいけないのでしょうか?

  • 留数定理の証明

    留数定理の証明はどのようにしたらよいのでしょうか? Res(f,z。)=lim z→z。1/(k-1)!・d^(k-1)/dz^(k-1)[(z-z。)^k・f(z)] の証明です。 数学記号を表示できないので、大変だと思いますが、 誰か教えてください!!

  • 留数定理を用いた計算について

    f(z)=1/zとし、0.5+0iを中心とした半径1の円を反時計回りに一周積分したいのですが、 z=0.5+exp(iθ)、dz=i*exp(iθ)dθ とおいて置換積分すると ∫1/z dz =∫(i*exp(iθ))/(0.5+exp(iθ))dθ =[ln(0.5+exp(iθ)] =ln(0.5+exp(2πi))-ln(0.5+exp(0i)) =0 となって0になってしまうんですが、f(z)には0+0iに特異点があるので 留数定理より一周積分した答えは2πiになるはずだと思うので上記の計算結果が なぜこうなるのか理解できません。 自分の何が間違っているのか教えてください。 よろしくお願いします。

  • 留数定理を使った解き方を教えてください。

    留数定理を使った解き方を教えてください。 ある本の次の問題の解き方が分かりません。分かる方教えていただきたくよろしくお願いいたします。 ----- 原子衝突の理論では次の、実数pを含む積分に遭遇する。 I=∫(-∞→∞){(sin t)exp(ipt)/t}dt この積分を求めなさい。 ----- 答は、以下のとおりです。 ----- |p|>1ならI=0で、|p|<1ならI=π。 ----- 答に示されている積分経路は以下のとおりです。(本の説明では、ひとつ前の問題の積分経路として記載されていますが、おそらくそれは誤植で、この問題の積分経路と思われます。) また、ε→0、R→∞の極限を取ると思われます。 ----- C1:ε→R(ε及びRは正の実数。実軸上を移動) C2:R→-R(θ=0→πの反時計回り) C3:-R→-ε(実軸上を移動) C4:-ε→ε(θ=π→0の時計回り) ----- これ以上の解説はありません。 その本の他の問題を参考に、以下の計算をしてみました。 f(z)=(sin z)exp(ipz)/z とおくと、 sin z=(exp(iz)-exp(-iz))/2i より f(z)=(exp(2iz)-1)exp(i(p-1)z)/2iz となり、 z=r(cosθ-isinθ)とおくと、 exp(i(p-1)z)=exp{-(p-1)rsinθ+i(p-1)rcosθ} となります。 C4の経路では、f(z)=0となるような気がするのですが、C2の経路はどうすればよいのか分かりません。 よろしくお願いいたします。

  • 留数

    次の関数の極と留数を求めよという問題で、 関数:1/(z^n-1) これは分母が0になる関数を求めるとといいのでexp(2 i m π/ n) が極と解答には書いてありました 確かにこれを分母に代入すると、exp(2 i m π) - 1=cos2mπ+i sin2mπ - 1=1 - 1=0となる と自分なりに解釈したんですがこれは正しいでしょうか あと、留数なんですけど、Res[ 1/(z^n -1 ) , exp(2 i m π/ n)]=lim(z→exp(2 i m π/ n)) {z - exp(2 i m π/ n)}/z^n -1}の計算を恐らくすると思うんですがこの計算をどうやってすればいいのか分かりません どなたか分かる方、教えてください 特に普通留数を求めるときってz - a(a:極)と分母が約分できてあとはaを代入するってやり方がメジャーだと思うんですけどこの関数の場合、どう約分できるかが分からないのでその辺を教えてくれたらありがたいです

  • 複素解析 留数定理

    ∫[|z|=3] dz/(z^2 -3z+2) ∫[|z|=2] z/(z+1)(z^2 +1) という2つの問題を留数定理を使って自分なりにチャレンジしてみたのですが、よく理解できないところがあるので質問させていただきます。 まず特異点(?)を求めるのに2問とも分母=0としました。 そして留数を出すのにlim(z→a) f(z)(z-a) としました。 最後に留数定理で2πiをかけて、それぞれ答えが0、πiとなりました。 参考書の見よう見まねでやったので、ほとんどチンプンカンプンな状態なんですが答えとしては合っていますでしょうか。 また、留数を求める際に「○位の極」っていうのを意識しないといけないようなのですが、ここではどうなのでしょうか。 最後に、問題に「反時計回り一周の積分である」とありますが、特に意識しないといけませんか? よろしくお願いします。

  • 複素積分です。

    ∫(θ:0→π) iexp(iRexp(iθ)) dθの積分(Rは正の定数)を、 式変形 z = Rexp(iθ) と置いて ∫exp(iz)/z dzと式変形したのですが、 この場合積分路が閉曲線でないので、留数定理を用いることが出来ないと思い、つまづいてしまいました。こういう場合はどのように考えるべきなのでしょうか?また答えはいくつになるのでしょうか? 非常に素人的な考えなのですが、(θ:0→2π)ならば、答えは2πiになるので、今の場合はその半分でπiくらいになるのかなと思ったのですが(^^;

  • 留数定理

     皆さん、こんにちは。今回は留数定理について聞きたいことがあるのですが問題は、 Cを円 |z+i|=2 とするとき留数定理を使って∫c {z^2・sin (1/z)}dz を求めなさい。  というものですが、私はこの時、(z^2)と{sin (1/z)}で部分積分を利用してとこうとしています。そこで、参考書やネットを通じて調べましたが、sin (1/z)の積分の仕方が今ひとつ理解できません。 どなたか、分かる方がいらっしゃれば幸いです。よろしく願います。

  • 留数定理を用いる計算

    曲線Cが|z-i| = 1 で表される円であるとき、∫c {(e^z)/(z^4 -1)}dz の値を求めよ という問題にて、 (z^4 -1)=(z+i)(z-i)(z+1)(z-1)  Cはz=iを中心とした半径1の円なので、正則で無い点はz=iのみ z=iにおける留数 Res[f,i]=lim[z→i](z-i)f(z) =(e^i)/{2i(i+1)(i-1)} =(e^i)/(-4i) 留数定理より、 ∫c {(e^z)/(z^4 -1)}dz  =2πi{-(e^i)/4i} =-πei/2   と計算しました しかし、解答は -{(πcos1)/2} - {(πsin1)i}/2 とのことでした。 解答から、正則で無い点が2つ、それぞれが2位の極だと考えたのですが、見当がつきません ご教授、お願いします