• ベストアンサー
  • すぐに回答を!

図形と計量

高校1年の図形と計量の問題なんですが、 <1>半径4の円の8倍の面積をもつ円の半径を求めよ。 という問題と、 <2>大小2つの立方体があり、その表面積の比は2:1であるという。この2つの立方体の相似比と体積比をそれぞれ求めよ。 という問題です。 求め方を教えてください。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

<1> 求める円の半径をrとする。半径4の円の面積は π・2・2=4π 求める円の面積は 4π・8=32π 求める円の面積はπ・r^2で表されるので、 π・r^2=32π この方程式を解けばよい。 <2> 大きい方の立方体の一辺の長さをa、小さい方の立方体の一辺の長さをbとする。 大きい方の立方体の表面積は、 a^2×6=6a^2 小さい方の立方体の表面積は、 b^2×6=6b^2 この比が2:1であるので、 6a^2:6b^2=2:1 となる。これより、 a^2=2b^2 両辺の√をとれば a=√2・b となるので、相似比が求まる。また、相似な2つの立体の体積比は相似比の3乗となるので、相似比の両辺を3乗すれば体積比が求まる。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とても分かりやすく教えていただいてありがとうございます。

その他の回答 (2)

  • 回答No.3
  • tarame
  • ベストアンサー率33% (67/198)

相似比が m:nの図形において 面積比は m^2:n^2 体積比は m^3:n^3 表面積比は m^2:n^2 であることを使うのかな? <1>は 面積比が「1:8」なので、 相似比は「√1:√8」 <2>は 表面積比が「2:1」なので、 相似比が 「√2:√1」

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 対比して考えたらいいんですね。 また何かあったら、お願いします。

  • 回答No.1
  • BLUEPIXY
  • ベストアンサー率50% (3003/5914)

一般に、 長さがa倍になったら 面積はa2乗倍 体積はa3乗倍です。 それがわかってたら簡単ですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

当てはめて考えたらいいんですね。 ありがとうございます。

関連するQ&A

  • 図形と計量(高校数学I)

    図形と計量の問題で 「半径2の球に高さ3の円錐が内接している。球と円錐の体積比と表面積比を求めよ」 が分かりません。ヒントによると円錐の底面は√3になるそうですが何故でしょう。球の体積と表面積は分かるのですが・・・。 ちなみに答え(球:円錐)は体積比32:9、表面積比は16:9だそうです。 確かに円錐の底面の半径が√3ならこのようになるのは分かりますが、どうやって考えればいいのでしょう?

  • 高校数学I  至急お願いします!

    問題1、 半径が4である球の体積と表面積を求めよ。 問題2、 2つの直方体P、Qは相似で、その相似比は2:5である。       (1) Pの表面積が12cm2(平方センチメートル)であるとき、Qの表面積を求めよ。       (2) Qの体積が500cm3(立方センチメートル)であるとき、Pの体積を求めよ。 問題3、次の図形の面積を求めよ。        (1)a=12 b=15 c=60°である△АBC  (2)隣り合う2辺の長さが7、10で、そのなす角が30°である平行四辺形 宜しくお願いします。

  • 図形の問題が・・・(中学3年生)

    また、図形でわからない問題が出てきました。 ある一部分だけ、どうしてもわからなくて 答えが導き出せません。 解答の過程になるのですが 誰か、教えてください。 (問題) 三角すいV-ABCの1辺VAを1:2に分ける点A'を通り 平面VBCに平行な平面でこの三角すいを切り 2つの立体に分けた。立体AA'B'C'の体積を96(立方センチメートル) とするとき、立体A'B'C'-VBCの体積を求めよ。 (解答) 三角すいA-A’B’C'と三角すいA-VBCは相似で 相似比は、2:(2+1)=2:3である。 相似比を利用すると、立体A'B'C’-VBCの体積は 96×((2分の3)の2乗ー1)=96×8分の19=228(立方センチメートル) ※ここで、ほとんど理解できるのですが ( )の中の、-1というところがわかりません。 面積比から、どうして1を引くのでしょうか? この1というのが どこから出てきたのかだけでもいいので 誰か教えてもらえないでしょうか? よろしくお願いします。

  • お願いします‼相似な図形

    相似な図形PとQについて、次の問いに答えなさい。 ただし、PとQの面積をそれぞれS1,S2とする。 (1)PとQの相似比が2:5で、S2=100のときS1を求めなさい。 (2)PとQの相似比がk:1で、S1はS2の1/3倍であるとき、kの値を求めなさい。

  • 図形の相似条件について

    図形の相似条件について質問があります。 問題:平行な二つの面の上面と底面の半径の比が1:2である円錐台を高さを3等分する二つの 平面で切断したときにできる3つの立体の体積比をもとめよ。 解答・・・ 3等分した高さをそれぞれH、円錐台の側面を延長してできる円錐の頂点をAと、 Aから上面までの高さをXとすると、 上面の半径:底面の半径=1:2=X:X+3H よってX=3H Aを頂点、4つの平面を底面とする4つの円錐は相似であり 相似比はX:X+H:X+2H:X+3H=3:4:5:6 よって体積比は27:64:125:216 円錐代を切断でいてできる3つの立体の体積を上から順にV1,V2,V3とすると V1:V2:V3=64-27:125-64:216-125=37:61:91 というのが流れなのですが、ここで分からないことがあります。 なぜ、「Aを頂点、4つの平面を底面とする4つの円錐は相似」なのでしょうか? 私は、てっきりV1とV1+V2とV1+V2+V3が相似で、 高さの相似比がH:2H:3H=1:2:3なので それから体積比V1:V2:V3=1:2^3-1:3^3-2^3-1なのかと思いました。 実は、V1とV2とV3も相似な図形にみえます。 三角形は下記のような相似条件があって、 (1)3組の辺の比が等しい (2)2組の辺の比が等しく、そのはさむ角が等しい (3)2組の角が、それぞれ等しい それにあてはまるか?を考えればいいのかと思うのですが、 立体の時は何をてがかりにしたらいいのでしょうか? 「Aを頂点、4つの平面を底面とする4つの円錐」は相似で 「V1とV1+V2とV1+V2+V3」は相似ではない、 「V1とV2とV3も相似ではない」理由、判断の仕方を教えてください。 初歩的なことでお恥ずかしいのですが、よろしくおねがいいたします。

  • 相似な立方体

    2つの立方体F,Gがあってその相似比は2:1である。Fの表面積が96cmず^2のとき次のものを求めよ。 (1)Fの体積 (2)Gの体積 まずもう考え方からすべてわかりません どなたか教えてください

  • 三角形と比

    ・画像の図でxとyの値を求めてください。 ・相似な2つの立体P.Qがありその相似比は2:3です。 (1)PとQの表面積の比をいいなさい。 (2)Pの体積が40立方センチのときQの体積を求めなさい。 この問題どうやってとくか教えて下さい(´・_・`)

  • 図形の問題です。

    母線の長さが6√2、高さが8の円錐があります。 この円錐の内部に、体積が最大になる球をつくるとき、この球の半径を求めよ。 また、同じ円錐の内部に、体積が最大となる立方体をつくるときの立方体の4つの頂点が円錐の底面にあるものとして、この立方体の一辺の長さを求めよ。 という問題です。 解き方とともに、お願いします。

  • 相似形の体積比、面積比

    相似形の面積比は相似比の2乗 面積比がわかっていて相似比を出したいときは√面積比でいいのはわかりますが、 相似形の体積比は相似比の3乗 この場合、体積比がわかっていて相似比を出したいときはどうするのでしょうか? 何方か教えてください><。

  • 図形の問題です。

    図形の問題です。 底面の半径が3cm、高さが4cmの直円錐を底面に垂直な平面で2等分した立体である。この立方体の表面積を求めよ。 答えは12π+12cm2です。 扇形の中心角は360°×3/5×1/2=108°になるようですが、3/5の意味が分からないのでここだけ教えてください。 よろしくお願いします。