ringohatimitu の回答履歴

全327件中101~120件表示
  • 整数問題

    xは整数で、pは素数のとき、x^2=p^5+p^2+1を満たす xとpは存在しないことをしめせ。  a^2<p^5+p^2+1<(a+1)^2 となるaが存在することを示せばいいと 考えましたが、このあとがわかりません。素数の条件がどこで利くのかも 想像が付きません。よろしくアドバイスお願いします。

  • 数学の漸化式

    1.{a1}=0 {an;1}=(an+8)/(an+3)    答え:{4・(-5)^n-1 -4}/{2・(-5)^n-1 +1} 2.{a1}=2 √2{an+1}^5={an}^6 答え:{an}=2^【1/2{(6/5)^n-1 +1} 3.{a1}=4 {an+1}=4/(n+1)+1/{an} 答え:{an}=(n+1)^2/n^2 この3つの問題がわからなくて困ってます; 1つ目は特性方程式から{an+1}-α、{an+1}-β、【{an+1}-α】/【{an+1}-β】の計算をしたのですがうまく答えが出ませんでした; 2つ目は底を2とする対数をとったのですが、答えと合いませんでした。。 3つ目は、よくわかりませんでした; この3つがわからなかったので、詳しい解説と計算の方をお願いします<(_ _)>>< 3つとも中途半端ですいません。。 問題が見にくかったらすいません。

  • 数列の問題

    (1)a[1]=5/2,a[n+1]=(a[n])^2-2 (2)b[n]はa[n]の小数第一位を四捨五入した整数値 (1)と(2)を満たす数列a[n]とb[n]で、次の問いに答えよ。 ア.b[3]を求めよ。  順番に計算してa[3]をもとめて、b[3]=16 イ.n=>2のとき、b[n]を求めよ。  a[n]の一般項を求めてと考えたが、一般項は求められないのではないかと思った。  アのように、いくつかを計算して規則性を見つけようと考えましたが、2乗の計算で、  煩雑になり処理できず。よろしくアドバイスをお願いします。

  • 微分について

    yをxで微分するとき、dy/dxと書きますよね。そして「ディーワイ、ディーエックス」と発音します。 これは「ディーエックスのディーワイ」と分数のように発音してはいけないのでしょうか。 分数のように発音しないなら、厳密に言ってdy/dxは分数ではないということなのでしょうか? また積分のとき置換積分などで t=(x+1)^2 とおいて dt/dx=2(x+1)   --(1) となり、 dt=2(x+1)dx というような変形をします。その際(1)式にdxをかけたという認識で厳密によろしいのでしょうか? となるとdt/dxは分数ということになり、なぜ、わざわざ呼びなれた「ディーエックス分のディーティ」と 分数のように呼ばず、「ディーティ、ディーエックス」と呼ぶのでしょうか? 一般論としてではなく、厳密な数学的な意味を教えてくださればうれしいです。 ちなみに高校時代の先生は分数のように発音していました。

  • 整数の問題がわかりません

    a^2+b^2=c^2をみたす自然数(正の整数)a,b,cがある。ただし、a,bは互いに素でbは偶数であるとする。c+a=2p、c-a=2qとなる自然数p,qが存在し、pとqは互いに素であることを示せ。ここで、2つの自然数が互いに素であるとは、その2数の正の公約数が1のみであることである。 です。 条件からbが偶数ならa=奇数、c=奇数。という事ぐらいしか分かりませんでした・・・ 解答してもらえるとありがたいです

  • 漸化式の問題考え方はいいでしょうか

    a[1]=b[1]=1,a[n+1]=a[n]+2b[n]・・あ,b[n+1]=a[n]+3b[n]・・い (n=1,2,3......) のとき、 (1)lim[n->∞]b[n]=∞を示せ。 (2)a[n+1]*b[n]-a[n]*b[n+1]をa[n],b[n]であらわせ、またa[n-1],b[n-1]であらわせ。 (3)lim[n->∞]a[n]/b[n]を求めよ。 (1)実際にb[n]の一般項をもとめて、n->∞をして、∞を示す。 (2)項の番号を下げていく。(-1になることがわかる。) (3)(2)で求めた式の両辺をb[n]*b[n+1]でわり、n->∞をすると  (1)より、右辺は0に収束するから、lim[n->∞]a[n+1]/b[n+1]=lim[n->∞]a[n]/b[n]・・う  で収束する。また、(あ/い)よりa[n+1]/b[n+1]=(a[n]+2b[n])/(a[n]+3b[n]) 右辺の分母分子を  b[n]で割り、うの式からこの値をk(>0)とすると、k=(k+2)/(k+3) これをといて,-1+√3。 (3)はごまかしがあるようにおもいます。(1)は簡単にできるのではないかとおもいます。(2)はこれしかないとおもいます。 よろしくお願いします。

  • 漸化式の問題考え方はいいでしょうか

    a[1]=b[1]=1,a[n+1]=a[n]+2b[n]・・あ,b[n+1]=a[n]+3b[n]・・い (n=1,2,3......) のとき、 (1)lim[n->∞]b[n]=∞を示せ。 (2)a[n+1]*b[n]-a[n]*b[n+1]をa[n],b[n]であらわせ、またa[n-1],b[n-1]であらわせ。 (3)lim[n->∞]a[n]/b[n]を求めよ。 (1)実際にb[n]の一般項をもとめて、n->∞をして、∞を示す。 (2)項の番号を下げていく。(-1になることがわかる。) (3)(2)で求めた式の両辺をb[n]*b[n+1]でわり、n->∞をすると  (1)より、右辺は0に収束するから、lim[n->∞]a[n+1]/b[n+1]=lim[n->∞]a[n]/b[n]・・う  で収束する。また、(あ/い)よりa[n+1]/b[n+1]=(a[n]+2b[n])/(a[n]+3b[n]) 右辺の分母分子を  b[n]で割り、うの式からこの値をk(>0)とすると、k=(k+2)/(k+3) これをといて,-1+√3。 (3)はごまかしがあるようにおもいます。(1)は簡単にできるのではないかとおもいます。(2)はこれしかないとおもいます。 よろしくお願いします。

  • カルタン部分代数の定義に関する質問

    <カルタン部分代数の定義>半単純リー代数gに対して、カルタン部分代数hとは、 (1) 任意のH∈hに対して、ad(H)∈gl(g)は対角化可能である (2) hは極大可換部分代数である について、定義の内容はわかるのですが、”(1)の条件をもつ部分リー代数hは、可換となる”(らしい?)ことがわかりません。もしよろしければお教え頂けないでしょうか? (※ad(X)(Y)=[X,Y] ([X,Y]はブラケット積)と定める)

  • キリング形式における線形変換のトレースの計算

    X,Y∈gl(m,C)に対して、行列ad(X)とad(Y)の積ad(X)ad(Y)のトレースである複素数を対応させ、リー代数のキリング形式をB(X,Y)=Tr(ad(X)ad(Y))と定義しています。 ここでZ∈gl(m,C)に対して、X^2Z∈gl(m,C)を対応させることにより、線形変換を得ることができますが、そのトレースがmTr(X^2)となることがわかりません。もしよろしければお教え頂けませんか?

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????

  • 0の0乗を1と考える

    べき乗x^n を、1 に x を n 回掛けることと考える場合がある。 その場合は 0^0=1 である。 これは、総乗を使って x^n=Π[i=1,n]x と考える場合も同じである。 総乗の場合も、何も掛けないこと、つまりΠΦは 1 となる。 この時、べき乗の定義を、次のように考えていることになる。 ・x^0=1, ・x^(n+1)=x^n*x (n>=0). この変更により変化するのは、0^0 の値だけである。 以上の文章に、間違いはありますか? なお、これに従ったべき乗に、利便性や0^0での連続性はありませんが、 それは一般的なべき乗でも同様であり、 どちらが正しいかを数学的に証明することはできません。

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????

  • 0の0乗を1と考える

    べき乗x^n を、1 に x を n 回掛けることと考える場合がある。 その場合は 0^0=1 である。 これは、総乗を使って x^n=Π[i=1,n]x と考える場合も同じである。 総乗の場合も、何も掛けないこと、つまりΠΦは 1 となる。 この時、べき乗の定義を、次のように考えていることになる。 ・x^0=1, ・x^(n+1)=x^n*x (n>=0). この変更により変化するのは、0^0 の値だけである。 以上の文章に、間違いはありますか? なお、これに従ったべき乗に、利便性や0^0での連続性はありませんが、 それは一般的なべき乗でも同様であり、 どちらが正しいかを数学的に証明することはできません。

  • 0の0乗を1と考える

    べき乗x^n を、1 に x を n 回掛けることと考える場合がある。 その場合は 0^0=1 である。 これは、総乗を使って x^n=Π[i=1,n]x と考える場合も同じである。 総乗の場合も、何も掛けないこと、つまりΠΦは 1 となる。 この時、べき乗の定義を、次のように考えていることになる。 ・x^0=1, ・x^(n+1)=x^n*x (n>=0). この変更により変化するのは、0^0 の値だけである。 以上の文章に、間違いはありますか? なお、これに従ったべき乗に、利便性や0^0での連続性はありませんが、 それは一般的なべき乗でも同様であり、 どちらが正しいかを数学的に証明することはできません。

  • K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せ

    K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}とする。 K上のテンソル積P_2(×)RとP'_2:={a_0+a_1x+a_2x^2;a_i∈R}とは同型である事を示せと言う問題です。 P_2(×)RからP'_2への全単射な同型写像fとしてどのようなものが取れますでしょうか? P_2(×)R∋∀p(×)r→f(p(×)r):=????

  • 0の0乗を1と考える

    べき乗x^n を、1 に x を n 回掛けることと考える場合がある。 その場合は 0^0=1 である。 これは、総乗を使って x^n=Π[i=1,n]x と考える場合も同じである。 総乗の場合も、何も掛けないこと、つまりΠΦは 1 となる。 この時、べき乗の定義を、次のように考えていることになる。 ・x^0=1, ・x^(n+1)=x^n*x (n>=0). この変更により変化するのは、0^0 の値だけである。 以上の文章に、間違いはありますか? なお、これに従ったべき乗に、利便性や0^0での連続性はありませんが、 それは一般的なべき乗でも同様であり、 どちらが正しいかを数学的に証明することはできません。

  • 積分範囲-∞→∞の積分の発散についてです。

    「∫(x/1+x^2)dx 積分範囲-∞→∞ が、発散することを確かめよ。」 という問題なのですが、何度計算をしても0に収束してしまいます。 そもそも関数が奇関数なので0に収束するので間違いないと思うのですが…教科書に載っているの問題なのですが解答は「∫(x/1+x^2)dx 積分範囲0→∞ =∞より∫(x/1+x^2)dx 積分範囲-∞→∞は発散」となっています。どういうことなのですか?

    • ベストアンサー
    • noname#72822
    • 数学・算数
    • 回答数3
  • フェルマー小定理の特殊形?

    高校受験の娘から整数問題の質問をされ、答えたついでに類題を 出してやろうとあれこれ考えていたところ、以下のような規則を みつけました。 n^(4m+1)≡n (mod 10) : n,mは 整数 恥ずかしながら自分で証明できなかったので、娘に出題することは やめましたが、それ以前この式は本当に正しいのだろうかという疑問が あります。 フェルマー小定理の特殊形のような、そうでないような・・・。 ●すでに知られた一般的な規則で、正しいものでしょうか? ●証明はかなり難しいものでしょうか?  (中学レベル、高校レベル、それ以上、程度で結構です) 注)私自身は数学に興味はもっていますがほとんど素人の人間です。   あまり難しい説明は理解の範囲を超えると思いますが、この規則の   原型となる公式や、成立する範囲、条件などについてお教えいただ   ければ幸いです。   (もし証明可能であればヒントをいただければ一度チャレンジして    みようかなとも考えております)   よろしくお願いします。