• 締切済み

Y=A(X-By)

Y=A(X-By) この式を展開すると (1+AB)y=AX になるようですが、 Y=A(X-By) Y=AX-ABy ABy+Y=AX ここまでしか分からないので教えて下さい

みんなの回答

  • bunjii
  • ベストアンサー率43% (3589/8248)
回答No.1

>ここまでしか分からないので教えて下さい ByのyはY=A(X-By)のYと同じと言うことでしょうか? ABY+Y=AXの左辺をYで括れば(1+AB)Y=AXになります。

関連するQ&A

  • {ax+by|x,y∈Z}

    aとbが互いに素とは限らないときは、{ax+by|x,y∈Z}は、aとbの最大公約数の倍数全体の集合になる。この定理の証明でわからない点があるので質問します。 これらの定理は、S={ax+by|x,y∈Z}とおくと集合Sが"差に関して閉じている"という性質をもつ。 (x_1,x_2,y_1,y_2∈Zのとき、(ax_1+by_1)-(ax_2+by_2)=a(x_1-x_2)+b(y_1-y_2)ここでx_1-x_2,y_1-y_2∈Zとなること)ので、ある正の整数dを用いてS={nd|n∈Z}(Sはdの倍数全体)と表されるのであるが、 Sの最初の定義から、a∈S(x=1,y=0とする)かつb∈S(x=0,y=1とする)であるから、aとbはdの倍数(dはa,bの公約数)であり、・・・(1) ここからがわからないところです。他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数であるから・・・(2)、dはa,bの最大公約数というわけである。で証明は終わるのですが、 証明の大まかな流れは、(1)よりd≦(a,b) (a,b)は、aとbの最大公約数、(2)よりd≧(a,b)よって、d=(a,b)だと思うのですが、ax_0+by_0=dをa'dx_0+b'dy_0=dとしてみたりしても、a,bの任意の公約数はdの約数であるから、というのがわかりません。どなたか、他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数である。を説明してください。お願いします。

  • ax+by+c=0とy=ax+bについて

    質問の方、失礼致します。 ある参考書には、直線y=2x-3をax+by+c=0の形に2*x-1*y-3のように式変換をすればax+by+c=0の形でも直線y=2x-3を表すことが出来ると書いてあるのですが、2*x-1*y-3この式の -1 いわば ax+by+c=0 の b に当たる部分はどこからやってきたのでしょうか…? 今現在の自分の理解が追いついていると思われる点は、ax+by+c=0 こちらの式の aは傾き xはx座標 yはy座標 cはy切片(xが0の時のyの位置) b…? といった様な解釈になります。ご教示の程よろしくお願い致します。

  • x+y+z=5、3x+y-15

    x+y+z=5、3x+y-15を満たす任意のx、y、zに対して常にax²+by²+cz²=5²が成り立っている時定数a、b、cを求めよ。 このときの、途中まではわかりますが x+y+z=5・・・・・・(1) 3x+y-z=-15・・・(2) (1)+(2) 4x+2y=-10 y=-2x-5・・・・(3) (3)を(1)に代入 x-2x-5+z=5 z=x+10・・・・・(4) ax^2+by^2+cz^2=5^2 (3)、(4)を代入する ax^2+b(-2x-5)^2+c(x+10)^2=5^2 ax^2+b(4x^2+20x+25)+c(x^2+20x+100)-25=0 (a+4b+c)x^2+20(b+c)x+25b+100c-25=0 ここまで、 このときに、解説には a+4b+c=0 a+3b=0 4a+9b-1=0 としているのですが なぜ0なんですか。何と係数比較しているんですか

  • y=ax-2と円x^2+y^2=1が異なる二点A.

    y=ax-2と円x^2+y^2=1が異なる二点A.Bを共有し、線分ABの長さが√2のときaをもとめよ。 この問題をおしえてください

  • -1=<x=<1,-1=<y=<1において、

    -1=<x=<1,-1=<y=<1において、 1-ax-by-axyの最小値が正になるような定数a,bの範囲を求めよ。 つぎのような考え方をとりましたが、よいでしょうか。 yを固定して、xの1次関数としてみると、-a(1+y)x+1-by y=-1のとき、1+b>0,aは任意 y=-1でないとき、 (1)a>0のとき (2)a=0のとき (3)a<0のとき に場合わけをして、(1)(2)(3)のそれぞれについて最小値をもとめ、これらをyの1次関数とみて また同様に最小値をもとめる。場合分けが多いので、別の方法があるのかとおもいました。 よろしくおねがいします。

  • ax+by=1(x,yは整数)の解法について質問です。

    ax+by=1(x,yは整数)の解法について質問です。 79x-339y=1(x,yは整数) という問題があったのですが、解答で、 339=4*79+23 79=3*23+10 23=2*10+3 10=3*3+1 として、 1=10-3*3 =10-3*(23-2*10) ここまでは今までやってきたことの 逆の操作のをしていっているのだと 思うのですが、この次で、 1=7*10-3*23 となっています。 この式はどこからでてきたのでしょうか? 解説をいただけるとうれしいです。

  • Euclidの互除法とAx+By=GCM(A,B)となるx,yのイメー

    Euclidの互除法とAx+By=GCM(A,B)となるx,yのイメージ Euclidの互除法のイメージとして、 A×Bの長方形を、なるべく大きな正方形で埋めていくようなイメージで捉えていました。 すると最大公約数が求められるイメージはわかるのですが x,yがどういう数なのか今一つ掴めません (代数的にAx+By=GCM(A,B)の式が得られることは理解できています)。 私が思っているようなイメージでなくて結構ですので 互除法のイメージとx,yのイメージが両方掴めるようなモデルをご呈示ください。 また、Euclidの互除法の回数は、最大でも桁数の5倍だそうですが なぜ10進数表記の桁数、つまり常用対数に依存するのでしょうか? 正確な式は自然対数の2倍くらいだったりするのでしょうか。

  • y´´+y´=e^x+x^2の特殊解ですが…

    回答者の皆様、お世話になります。 y´´+y´=e^x+x^2の特殊解ですが… 以前、この掲示板で教えて頂いた右辺を分ける考え方でいきます。 y´´+y´=x^2として、 y=ax^2+bx+c y´=2ax+b y´´=2a ∴y´´+y´=2ax+b+2aと上手く、x^2の項が作れません。 そこで、 y´=ax^2+bx+cとして、y´´=2ax+b ∴y´´+y´=2ax+b+ax^2+bx+c =(a)x^2+(2a+b)x+(b+c)=x^2 係数よりa=1、b=-2、c=2 ∴y´=x^2-2x+2 ∫dy=∫(x^2-2x+2) dx y=x^3/3-x^2+2x と考えていいのでしょうか? 続けまして、y´´+y´=e^xとして、 y=ae^x, y´=ae^x, y´´=ae^x ∴y´´+y´=2ae^x=e^x 係数より2a=1, a=1/2 y=(1/2)e^x これらを合わせて特殊解は y=(1/2)e^x+x^3/3-x^2+2x で問題はないでしょうか?ご指導願います。

  • 非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは?

    非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは? a,b,cは互いに素でa^2+b^2=c^2、またx,y,cも互いに素であるとします。 例えば、(a,b,c)=(3,4,5)、(x,y)=(-1,7)ならば、 ax+by=25となって、cと素でなくなりますが、 どういった条件が成り立てば良いのでしょうか? 任意の整数の組(x,y)が与えられた時に、 (ax+by)/c≠0が約分できるような(a,b,c)の組を知りたいのです。 よろしくお願いします。 ちなみに以前の質問↓の続きです。 http://okwave.jp/qa/q6158436.html

  • 「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

    こんにちは。識者の皆様、宜しくお願い致します。 [問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。 [問2]x+y=1を満たす全てのx,yに対して ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。 [1の解] (5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので p=10-kの時(k=10-pの時) p+1=10-kの時(k=9-pの時)より a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p) で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から 23p^3-199p+218=0 となったのですがこれを解いてもp=6(予想される解)が出ません。 やり方が違うのでしょうか? [2の解] 与式をx+yという対称式で表せばならないと思います(多分)。 どうすれば対称式で表せるのでしょうか?