• ベストアンサー
  • 困ってます

数学bのベクトルの問題

四面体OABCの辺AB, OCの中点をそれぞれM,Nとし 三角形ABCの重心をGとする。 OAベクトル=aベクトル OB…略 とするとき 三角形OMCにおいて2つの線分OG,MNの交点をQとするときOQベクトルをaベクトル、bベクトル、cベクトルで表せ という問題でメネラウスを使った計算の場合MCがGに1:2 で内分されるのですがなぜでしょうか? よろしくお願いします。

noname#177685
noname#177685

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数346
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

>メネラウスを使った計算の場合MCがGに1:2 で内分されるのですがなぜでしょうか? #1さんのヒントにもありますが、 Gは△ABCの重心です。重心の性質の1つに、重心Gは中線MCを1:2に内分するとい性質があります。 参考URLをご覧ください(証明付き)。中学数学で習う範囲かと思います。 その他の参考URL ■ttp://www.asahi-net.or.jp/~jb2y-bk/NaturalSci/math/sankaku-en-1.htm ■ttp://www.e-learning-jp.net/teach_math/mathA/text_1/5/11/001a.htm

参考URL:
http://mtf.z-abc.com/?eid=870493

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

はい.

参考URL:
http://ja.wikipedia.org/wiki/%E4%B8%AD%E7%B7%9A

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高2の数学の春休み宿題のベクトルがわかりません。教えてくださいお願いし

    高2の数学の春休み宿題のベクトルがわかりません。教えてくださいお願いします。 問題は四面体OABCがあり、OA=1、OB=OC=√2、AB=CA=√3、BC=2である。辺ABの中点をMとし、線分OMの中点をNとする。また、三角形ABCの重心をGとし、OAベクトル=aベクトル(本当は文字の上に→です。書き方がわかりません。)OBベクトルはbベクトル、OCベクトル=cベクトルとする。また直線OGと直線CNの交点をTとする。でTから平面OABに下ろした垂線をTHとする。線分THの長さを求めよ。という問題がわかりません。この問題は(3)なんですが、参考に(1)はベクトルONをベクトルa,bを用いて、またベクトルOGをベクトルa,b,cを用いて表せ。(2)はベクトルOTをベクトルa,b,cを用いて表せ。ですわかる人いたら教えてください。お願いします。

  • 数学のベクトルの問題です

    四面体OABCにおいて辺AB,BC,CAを2:3,3:2,1:4に内分する点をそれぞれl,m,nとし線分clとmnの交点をpとする。 OA=ベクトルA、OB=ベクトルB、OC=ベクトルCとするときOPをベクトルA,B,Cで表せ 問題は以上です 宜しくお願いします

  • ベクトル

    OA=OB=OC=4,角AOB=60°,角BOC=角COA=45°を満たす四面体OABCがあり、 ↑OA=↑a,↑OB=↑b,↑OC=↑cとおく。このとき、 内積↑a・↑=8 内積↑b・↑c=↑c・↑a=8√2 である。 辺OA上に点Pをとり、↑OP=x↑a(0<x<1)とし、辺OB上に点Qをとり、↑OQ=y↑b(0<y<1)とする。また、辺OCの中点をMとする。 (1)三角形MPQの重心をGとすると、 ↑OG=x/3↑a+y/3↑b+1/6↑c である。したがって、線分OGを3:1に外分する点をRとすると、 ↑ OR=x/2↑a+y/2↑b+1/4↑c となる。 (2)辺OBと線分MPが垂直の時 x=(√2)/2 であり、さらに、(1)における点Rが三角形ABCを含む平面上にあるとき y=(3-√2)/2 である。このとき四面体OPQMの体積は四面体OABCの体積の (ソ(√タ)-チ)/ツ倍 である。 この問いのソ~ツまでを教えてください。 ほかは自分で考えたので、間違っているかもしれません…

  • 数学のベクトルに関する質問です。

    数学のベクトルに関する質問です。 四面体OABCにおいて、辺ABを1:2に内分する点をP、線分PCを2:3に内分する点をQとする。また、辺OAの中点をD、辺OBを2:1に内分する点をE、OCを1:2に内分する点をFとする。平面DEFと線分OQの交点をRとするとき、OR:RQを求めなさい。 という問題です。この問題を教えてください。

  • ベクトルの問題です。教えてください!

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください!

  • ベクトル、誰か助けて

    よろしくお願いします。結構苦戦してるんです。 四面体OABCがある。OAを→a、OBを→b、OCを→cとする。 三角形ABCの重心をGとし、OCの中点をMとする。 OGと三角形MABの交わる点をLとした時、OLを→a、→b、→cを使って あらわしなさい。 って問題なんです。試験に出そうなんです。誰か助けて!

  • 【数B】ベクトルの問題

    四面体OABCにおいて、辺ACの中点をP、線分PBの中点をQとし、 線分CQの延長とABとの交点をRとする。 (1)↑OA=a、↑OB=b,↑OC=cとするとき、↑OQを↑a,↑b,↑cを用いて表せ。 (2)AR:RBの比およびCQ:QRの比を求めよ。 (3)四面体OBQRと四面体OCPQの体積比を求めよ。 について、教えてください。よろしくお願いします!

  • 数IIICの問題

    体積が1である四面体OABCがあり、辺OAの中点をD、三角形ABCの重心をG、 線分AGの中点をM、辺OBをt:1-t (0<t<1) に内分する点をPとする。 (1)OMベクトルをOAベクトル、OBベクトル、OCベクトルを用いて表せ。 (2)平面DMPと辺BCの交点をQとするとき、OQベクトルをtとOBベクトル、OCベクトルを用いて表せ。   また、BQ:QCをtを用いて表せ。 (3)(2)の点Qに対し、四面体ODPQの体積Vとするとき、Vをtを用いて表せ。 また、tが0<t<1の範囲を変化するとき、Vの最大値を求めよ。 (1)は、OMベクトル=2/3OAベクトル+1/6OBベクトル+1/6OCベクトル (2)は、OQベクトル={(3t+1)/2(t+1)}OBベクトル+{(1-t)/2(t+1)}OCベクトル,BQ:QC=1-t:3t+1 となりましたが、(3)が全く分かりません。 ヒントでも構いませんが、出来れば解答、解説をお願いします。

  • 数学、ベクトルの問題

    数学のベクトル問題を解いていて、私にとっては複雑すぎて全く解き方がわからない問題がありました。以下に記しますので、どなたか数学が得意な方、よろしくお願いします。 四面体OABCの辺OA、OB上にそれぞれ点D、Eをとる。ただし、点Dは、点A、Oとは異なり、AEとBDの交点Fは、線分AE、BDをそれぞれ2:1、3:1に内分している。 また、辺BCをt:1(t>0)に内分する点Pをとり、CEとOPの交点をQとする。 (1)ベクトルOQを、ベクトルOB、ベクトルOC及びtを用いて表せ。 (2)直線FQと平面ABCが平行になるようなtの値を求めよ。 ちなみに、答えはわかっているので解き方を詳しく教えてください。 ※(1)の答えは、ベクトルOQ=3/(3t+8)×ベクトルOB+3t/(3t+8)×ベクトルOC  (2)の答えは、t=4/3 (←“4/3”とは「三分の四」のことです。)

  • ベクトルの問題です。解答よろしくお願いします。

    四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。