• ベストアンサー
  • すぐに回答を!

楕円(x/a)^2 + (y/b)^2

(a>b>0)の接線が両座標軸によって切り取られる線分の長さを求めよ 接線とy軸の交点をA、x軸との交点をB、接点を(x1,y1)としたとき、AB^2={(a^2/x1)^2 + (b^2/y1)^2}*1={(a^2/x1)^2 + (b^2/y1)^2}*{(x1/a)^2 + (y1/b)^2}≧(a+b)^2(∵コーシーシュワルツの不等式) minAB=a+b となるのは分かったのですが、解答にはコーシーシュワルツの不等式)とよってminAB=の間に よって(a^2/x1,b^2/y1)//(x1/a,y1/b)のとき という一文が追加されているのです そもそも点の座標が平行の意味が分かりませんし、調べてみましたがコーシーシュワルツの不等式にこのような条件はありませんでした これは何なのでしょうか?

noname#177380
noname#177380

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
noname#199771
noname#199771

#1です。 >ただ結局(a^2/x1,b^2/y1)//(x1/a,y1/b)って何なんですか? ベクトル(a^2/x1,b^2/y1)とベクトル(x1/a,y1/b)とが平行という意味ですね。 比の形にしたいなら、 a^2/x1:b^2/y1=x1/a:y1/b とか a^2/x1:x1/a=b^2/y1:y1/b とかですね。 わりとごちゃごちゃしてるので、ベクトルの内積をからめて幾何学的に理解 するのがお薦めです。 シュワルツの不等式と等号成立の証明はたぶん教科書に載ってるような 気がしますが、URLを載せておきます。 http://w3e.kanazawa-it.ac.jp/math/category/suu-to-siki/syoumei/henkan-tex.cgi?target=/math/category/suu-to-siki/syoumei/syuwarutunofutousiki.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりました ありがとうございました

その他の回答 (3)

  • 回答No.3
noname#182106
noname#182106

>調べてみたらa : b = x : yみたいですが(a^2/x1,b^2/y1)//(x1/a,y1/b)と関係があるのでしょうか ベクトルとしての表記では? (a, b)と(x, y)をベクトルとすると、a : b = x : yは平行条件ですね。 まあ普通は列(縦)ベクトルでかきますけど。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かりました ありがとうございました

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「コーシーシュワルツの等号成立条件」は分かりますか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

調べてみたらa : b = x : yみたいですが(a^2/x1,b^2/y1)//(x1/a,y1/b)と関係があるのでしょうか

  • 回答No.1
noname#199771
noname#199771

問題文がおかしいです。 「楕円(x/a)^2 + (y/b)^2」というのは 「楕円(x/a)^2 + (y/b)^2=1」の書き損じですか? そして、「線分の長さを求めよ 」というのは 「線分の長さの最小値を求めよ」の書き損じですか? >よって(a^2/x1,b^2/y1)//(x1/a,y1/b)のとき これはコーシー・シュワルツの不等式の等号条件です。 |AB|≧a+b だけでは、|AB|がa+b以上であるということしか言えていません。 最小値がa+bになるにはそういうx1,y1が存在することを言う必要 があります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

書き損じについてはその通りです すみませんでした そういうx1、y1がなければならないのは分かりました ただ結局(a^2/x1,b^2/y1)//(x1/a,y1/b)って何なんですか?

関連するQ&A

  • 楕円:(X^2/a^2)+(Y^2/b^2)=1

    楕円:(X^2/a^2)+(Y^2/b^2)=1 において、接線とY軸の成す角θです。 このとき、楕円と接線の接点の座標が点P(p,q)の場合、a,bを用いずにqを表すことは不可能でしょうか?

  • 楕円計算で困っています

    長径2a、短径2bの楕円があり、長軸と短軸の交点座標(いわゆる中心点)を(0,0)とする この中心点からx軸からの角度αで直線を引き、楕円との交点座標を(x1,y1)とし、 また、この座標がx軸に対して対称な座標を(x1,-y1)とする この2点に対して楕円の接線を引いて、2つの線の角度をβとする この条件で(x1,y1)座標と角度βを、a,b,角度αを用いて表現する方法はないでしょうか? 色々考えてみたのですがどうも上手くいきません。 どうかよろしくお願いします。

  • 楕円の問題

    楕円x^2/a^2+y^2/b^2=1の接線がx軸およびy軸と交わる点をそれぞれA,Bとしたとき、線分ABの長さはどのようにおして求めればよいでしょうか?

  • x>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、

    x>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、 xy+yz+zxの最大値を求めよ。 コーシーシュワルツの不等式を使うとでるとおもうが、 別解での解答はどうなるのか。よろしくお願いします。

  • 円(x-a)^2+(y-b)^2=r^2の接線

    御世話になっております。 数学IIより、 中心座標が原点でない円(x-a)^2+(y-b)^2=r^2 の周上にある点(x1,y1)に於ける接線の方程式の公式の導き方につまずいてます。基本は、中心座標が原点の円に関する接線の方程式の公式と同じだろうと思っていたら、最後の式変形がうまく出来ないのです。 一応やってみたので、間違ってる点があったらご指摘下さると助かります。 (1)中心座標が(a,b)、半径=rの円の方程式は(x-a)^2+(y-b)^2=r^2。この円の周上にある点Pの座標を(x1,y1)とする。また、この点Pの座標はx≠0、y≠0。 (2)円の中心から点Pを結ぶ線分(直線)OPの傾きは、y1-b/x1-a。一方点Pを通る接線Lの傾き(m)は、OP⊥Lであるから、(y1-b/x1-a)・m=-1 。 よってm=-(x1-a/y1-b)。 Lの方程式は分母を払った形で示すと y1・y+x1・x-by-ax+b・y1-ax+a・x1=x1^2+y1^2 ……I 次。点Pは円の周上にあるから、 (x1-a)^2+(y1-b)^2=r^2 ……II で、このあと。恐らくですが、I式をA=B。II式をB=Cで置き換えると、A=Cで、中心座標が原点の場合の接線の公式が成り立っているのだと思いますが。恐らく…… B=Cの方は簡単ですが、I式からA=Bの形にすることがうまく出来ないのです。平方完成?因数分解? そもそも私の考え方が全くの見当違いなのでしょうか…

  • 楕円の接線の長さに関する問題

    こんにちは。数学の問題で分からないものがあります。 (x/a)^2+(y/b)^2=1の接線がX軸、およびY軸で交わる点をA、Bとする。この時、線分ABの長さの最小値を求めよ。 という問題です。 自分が考えた解法の手順は以下のようなものです。 ・楕円との接点を(s、t)とおくと接線は「(y-t)=-(s×b^2)(x-s)/(t×a^2)」と書くことができる ・接線の式にx=0、y=0を代入すれば交点BとAを求めることができる。 ・(s、t)は楕円上の点なので(s/a)^2+(t/b)^2=1が成り立つ ・A^2+B^2を上の式を利用してsかtの式で表す ・式を変形して最小値を求める これでうまくいくと思ったのですが、非常に計算が複雑になってしまいました。 複雑すぎるので他の解法があるのかもしれないと思ったのですが、あるのでしょうか? よろしくお願い致します。

  • 図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA

    図のように、直線y=1/2x+a(a>0)が直線y=2xと交わる点をA、x軸、y軸と交わる点をそれぞれB、Cとするとき、点Aのy座標が12のとき、線分BOの長さを求めなさい。ただし、座標の1メモリを1cmとする。 という問題です。教えてください。

  • 放物線 (x-y)^2-2(x+y)+1=0 の直交する二接線の交点の

    放物線 (x-y)^2-2(x+y)+1=0 の直交する二接線の交点の軌跡を以下の方針で求めよ。 (a)傾きmの接線を求めよ。 (b)傾き-1/mの接線を求めよ。 (c) (a),(b)の交点を求め、その軌跡を求めよ。 という問題なのですが、接点が与えられていないので接線を具体的に求めることはできないのかなぁ と思ったのですが、この考えは間違ってますかね? もしできるなら、そのやり方を教えていただきたいです。

  • y=x^2のグラフ上を2点A、Bが線分ABの長さが一定になるように動く

    y=x^2のグラフ上を2点A、Bが線分ABの長さが一定になるように動くとき、 線分ABの中点のy座標の最小値を求めよ。 A(α,α^2),B(β,β^2)とおく。AB^2=k^2とおく。 ABの中点x=(α+β)/2,y=(α^2+β^2)/2 これらより、 12y^2-(64x^2+10)y+64x^4+16x^2-k^2=0 となりました。 これより、yの最小値をもとめようと思いましたが、 挫折しました。このような方法でよいのでしょうか。 よろしくおねがいします。

  • 楕円・切り取られる接線の最小値

    楕円(x^2/a^2)+(y^2/b^2)=1(0<b<a)の第一象限にある点における接線がx軸とy軸によって切り取られる線分の最小値を求めよ。 接点をP(s,t)(s,t>0)とおいて、接線の方程式が(sx/a^2)+(ty/b^2)=1、切り取られる接線の長さが(a^2/s)^2+(b^2/t)^2の平方根というところまで解きました。ここまでは正しいでしょうか?正しければこのあとの最小値の求め方、間違っていればお手数ですが最初からの解法を教えていただきたいです。よろしくお願いします。