• ベストアンサー
  • すぐに回答を!

今日中にお願いします!

数学Bのベクトルです。『座標平面上の原点O(オー)とし、点Aの座標を(1/3,0)、点Bの座標を(0,2/3)とする。負でない実数s、tはs+2t=3を満たしながら動くものとする。このとき、座標平面上の点PをOPベクトル=sOAベクトル+tOBベクトルにより定める』 ◎点Pの存在範囲を図示せよ。 ですが、図示は出来ないので解き方と最後の答えの座標を教えてください。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

s=3-2t なので、 OP=(3-2t)OA+tOB です。これを成分で表すと x成分:(3-2t)/3=1ー2t/3 y成分:2t/3 となるので、直線y=1-x がPの存在範囲(但しt>=0なのでy>=0)です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とてもわかりやすいです。ありがとうございます。

関連するQ&A

  • 【ベクトル】

    苦手なベクトル問題です(><) ベクトルの記号を→で示しています。 例)ABベクトル…AB→ 座標平面上の原点をOとし、A(1/3、0) B(0、2/3)とする。 負でない実数s、tは、s+2t=3を満たしながら動くものとする。 このとき、座標平面上の点PをOP→=sOA→+tOB→により定める。 (1)点Pの存在範囲の図示 (2)内積AP→・AP→の最小値 ガイドが少し載っていたのですが、 希望があれば追記しますm(__)m 解法つきでお願いしたいです(/_;)

  • 【ベクトルと平面図形】

    点Oを原点とする座標平面上に2点A(1,1)、B(1、-1)がある。 (1)実数s、tによって、OPベクトル=sOAべくとる+tOBベクトルで定められる点Pを考える。 s、tがs+st≦2、s≧0.t≧0を満たしながら動くとき、 点Pの存在する範囲を求めよ。 (2)実数uによって、OQベクトル=(1-u)QAベクトル+2uQBベクトルで定められる点Qを考える。 uが0≦u≦1を満たしながら動くとき、 点Qno存在する範囲を求めよ。 解ける方がいらっしゃいましたら 解説お願いしますm(_)m

  • ベクトル

    ABベクトルをABとします 1) 平面上の△ABCにおいてAB・BC=BC・CA=CA・AB が成り立つ時△ABCは正三角形であることを示せ 上の問題で AB+BC+CA=0(ゼロベクトル) ↑を使うような気がするのですが解法が全く思いつきません 2) 座標平面上の原点をOとし、点A(1/3,0)、点B(0,2/3)とする 負でない実数s,tはs+2t=3を満たしながら動くものとするこのとき 座標平面上の点Pを OP=sOA+tOBによりさだめる (1)点Pの存在範囲を求めよ (2)内積AP・APの最小値をもとめよ 2)は全くできないです どうか御教授よろしくおねがいします。

  • 数B 斜交座標

    以下の問題の解答解説をお願い致します。  △OABに対し、OP=sOA+tOB(s,tは実数、ベクトル記号省略)とする。 s,tが次の条件を満たしながら変化するとき点Pの存在範囲を図示せよ。   |s|+|t|≦1 ご回答宜しくお願い致します。

  • ベクトルについて

    ベクトルと平面図形の問題に取り組んでいるのですが、よく分かりません。 次の問題なのですが、解答と解説をしていただけないでしょうか。 平面上の3定点O,A,Bが、|OAベクトル|=1、|OBベクトル|=√3、OAベクトル・OBベクトル=-1を満たしている。 同一平面上で、∠APB=90°となる動点Pを考える。 OPベクトル=sOAベクトル+tOBベクトル(s,tは実数)と表すとき、sとtの間に成り立つ関係式を求めよ。 また、三角形OPAの面積の最大値を求めよ。 以上です。どうかお願いします。

  • 数学の質問です。お願いします。

    問題 面積がSである。三角形OABに対してOP↑=sOA↑+tOB↑とする。 (1) 定数S,tが条件 0≦S+t≦1/2, S≧0, t≧0,を満たして変化するとき点Pの存在する範囲の面積Sを用いて表せ (2) 定数S,tが条件0≦2s+t≦1,s≧0,t≧0を満たして変化するとき、点Pの存在する範囲の面積をSを用いて表せ。 ※という問題です。ベクトルのこの問題の解き方は、斜交座標平面の利用だけでしょうか?

  • ベクトルの終点の存在範囲の基本的な問題

    お世話になっております。 次の問題の正誤の判定をしていただきたく思います。 問「△OABに対して、OP↑=sOA↑+tOB↑とする。実数s、tが条件s+t≦2、s≧0、t≧0を満たしながら動く時、点Pの存在範囲を求めよ」という問題です。s+t=k(実数)の場合は何となく理解出来たので、一応やってみました。 s+t≦2より、(s/2)+(t/2)≦1。(s/2)=s'、(t/2)=t'とおくと、 OP↑=sOA↑+tOB↑=s'(2OA↑)+t'(2OB↑)…(1) ここで、2OA↑=OA'↑、2OB↑=OB'↑となる点A'をB'とると、 OP↑=s'OA'↑+t'OB'↑。s'+t'≦1、s'≧0、t'≧0より、点Pは △OAB∽△OA'B'であり相似比が1:2となる△OA'B'の周と内部に存在する。 終 宜しくお願いします。

  • 証明?

    三角形OABがあり、|OAベクトル|=3、|OBベクトル|=2、cosθ=5/6 とする。ただし、θ=∠AOBである。いま、sとtを実数としOPベクトル=sOAベクトル+tOBベクトルであらわされる点をPとする。 (1)四角形OAPBが平行四辺形となるためのsとtの条件を求めよ。 (2)点Pが∠AOBの二等分線上にある時、sとtの関係を求めよ。 この二問をお願いします。(1)は、ベクトル作るみたいにやると思ったのですが、言葉でどう表現すればいいか分かりません。 (2)は、二等分線ということは、三角形AOBは二等辺三角形と思ったのですがどうでしょうか。 よろしくお願いします。

  • ベクトル 点の動く領域の図示

    座標平面上にベクトルa=(2,1),b(1,4),c(2,3),d(3,3)が与えられている。点Pが動く領域を座標平面上に図示せよ。 (1)実数r,sが1/2≦r+s≦1、r≧0、s≧0を満たしながら動くとき、ベクトルp=ra+sbを位置ベクトルとする点P (2)実数r,s,tがr+s+t=1、r≧0、s≧0、t≧0を満たしながら動くとき、ベクトルp=ra+sb-tcを位置ベクトルとする点P (3)実数r,s,t,uが1≦r+s+t+u≦2、r≧0、s≧0、t≧0、u≧0をみたしながら動くときベクトルp=ra+sb+tc+udを位置ベクトルとする点P (1)はすぐにわかってかけたのですが、(2)になって文字が増えたとたんにわからなくなってしまいました。今まで2文字の場合しかやったことがなくていろいろ調べてみたのですが3文字の場合は載ってませんでした。2文字の場合と同じような考え方をするとは思うのですがなかなかわかりません。 考え方のヒントやアドバイスいただけるとありがたいです。よろしくお願いします

  • ベクトルの定義です・・ 

    3点O,A,Bが1直線上にないとき平面OABができる。この平面OAB上の任意の点Pに対して →   →  → OP=sOA+tOB となる実数s,tがただ1組存在する。「3点O,A,Bが1直線上にない」とする。これは → →  →→      →   →     → → OA=a ,OB=bとすると「a≠0、b≠0でありa//b でない」 と同値である。さらにこれは   → →→ 「αa+βb=0 ⇔α=β=0」と同値である・・・* とかいてあったのですが、*のところの「同値である」がいまいち分からないんです・・ 教えてください!!