• ベストアンサー

定積分の問題

I(n)=∫[0→π]{(e^χ)(sinχ)^n}dχ I(n+1)をI(n-1)とnで表せ という問題です。 部分積分でやると思うのですがどうしてもできません。 回答おねがいします。 -

質問者が選んだベストアンサー

  • ベストアンサー
  • FT56F001
  • ベストアンサー率59% (355/599)
回答No.3

> cosがでてきてしまい、I(n-1)がでてこないです。 もう一回部分積分すると,(cos x)^2が出てきて,1-(sin x)^2に置き換えられますよ。

amorexx
質問者

お礼

ありがとうございます!

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「e^x を積分する」という方針はあってる. ただ, その文では「具体的」ではないので, やったことを全部きちんと式で書いてください. そして, 問題の文章と比較してください.

amorexx
質問者

お礼

ありがとうございます!

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「どうしてもできない」というのは, 具体的にはどうやってどう「できない」のですか?

amorexx
質問者

お礼

ありがとうございます。

amorexx
質問者

補足

部分積分をe^χを積分、(sinχ)^nを微分でしました。 cosがでてきてしまい、I(n-1)がでてこないです。 やり方から間違ってるかもしれませんが、参考書にも答えがのっていなくてわかりません。 説明不足ですみません。 -

関連するQ&A

  • 積分の問題

    積分の問題です。どなたか教えてください。n=0,1,2・・・として、 I_n=∫(0~π/2)sin^nxdxとおく。limn→∞(I_n-1/I_n)を求め、limn→∞{(1-1/2^2)(1-1/4^2)・・・(1-1/(2n)^2}}=2/πを示せ。

  • e^(i*n*y) の積分

    e^(i*n*y) の積分 初めまして。grande と申します。宜しくお願い致します。 ∫[0, 2π] e^(i*n*x)dx = 2*π*δ(n,0) ( n = 0, ±1, ±2, ... ) (1.1) の式に関しまして、ご質問致します。 i は虚数を表しています。δは、クロネッカーのデルタです。 以下、積分区間は、0から2πとし省略させて頂きます。 オイラーの公式より、 e^(i*n*x) = cos(n*x) + i*sin(n*x) (1.2) ですので、(1.1)は、 ∫e^(i*n*x)dx = ∫cos(n*x)dx + ∫i*sin(n*x)dx (1.3) になります。(既に、この部分が違うのでしょうか・・・、とりあえず進めます) ここで、sin(n*x) は奇関数なので、積分結果が 0 になり、(1.3) は、 ∫e^(i*n*x)dx = ∫cos(n*x)dx = (1/n)*sin(2π*n) - (1/n)*sin(0*n) = 0 になります。 (1.1) の段階で、n = 0 とした場合に、(1.1) が成り立つのは承知しておりますが、解き下した場合、n = 0 とすると、1/n の部分でお手上げになってしまいます。 ご質問は、 (1.1) の式を解き下した際に、きっちりと成立することを教えて下さい。 こういう掲示板でご質問させて頂くのが初めてなので、書き方や質問の仕方等、無礼があるかもしれません、申し訳ございません。そういった点も含めて、今後学習していくつもりですので、ご配慮下さい。 ご質問の件、どうぞよろしくお願い致します。 --- grande

  • 複素積分の問題について

    「g(z)=1/(e^z+1)(z-1)^2を複素平面上で原点を中心とする一辺2R=4πN(Nは自然数)の正方形を反時計回りに回る積分経路Cで周回積分したものをN→∞とするとその値が0になることを示せ。」という問題で、N→∞をする前の答えは-2πi{e/(e+1)^2+Σk=1~N 1/(+-i(2k-1)π-1)^2}となるのですが、そのあとはどのようにすればよいのでしょうか。どなたか教えてください。

  • ディリクレ積分核

    ディリクレ積分核 D_n(t)=(1/2π)Σ[n=-N,N]c_n•e^(int) で定義されている。 D_n(t)が周期2πの偶関数であることを証明せよ。 という問題なのですが、参考書などを見てもD_n(t)は偶関数といきなり出てきていて証明がありません。教えてください。 前問に D_n(t)=(1/2){sin[N+(1/2)]t}/sin(t/2) を証明しました。 これを使うのでしょうか?

  • 積分問題を解いて下さい。

    以下の問題は早急に解きたいんですが、積分の仕方を忘れてしまい、解く事ができません。部分積分すると思ったのですが…。どなたか解いて頂けませんか? (1)∫(1-k^2sinφ^2)^(1/2) dφ   と、 (2)∫1/[(1-k^2sinφ^2)^1/2] dφ の二問です。 よろしくお願いします。

  • 非有界区間の積分と極限

    ∫[0,∞]e^(-x^2)dx=√π/2 を示すために e^x>x+1(x≠0)(x=0での一次近似) より 両辺にx=x^2とx=-x^2を代入すると 1-x^2<e^(-x^2)<1/(1+x^2)……(1) (1)のそれぞれのグラフの形に留意しながら定積分の値を定めて それぞれをn乗してから定積分しても大小関係は変化しないので ∫[0,1](1-x^2)^ndx<∫[0,∞]e^(-nx^2)dx<∫[0,∞]1/(1+x^2)^ndx ここで x=cosθと置換すると ∫[0,1](1-x^2)^ndx=∫[0,π/2]sin^(2n+1)θdθ x=1/tanθと置換すると ∫[0,∞]1/(1+x^2)^ndx=[0,π/2]sin(2n-2)dθ また I_n=∫[0,π/2]sin^nθdθ は1≦nにおいて I_2n=π/2・1/2・3/4・5/6・7/8…(2n-1)/2n=πΠ[k=1,n](2k-1)/2k I_(2n+1)=1・2/3・4/5・6/7・8/9…2n/2n+1=Π[k=1,n]2k/(2k+1) となる。 更に √n・x=yとおくと ∫[0,∞]e^(-nx^2)dx=1/√n∫[0,∞]e^(-y^2)dy なので 求める定積分は √n・I_(2n+1)<∫[0,∞]e^(-x^2)dx<√n・I_(2n-2) ここまでは自力でたどり着いたのですが lim[n→∞]I_(2n+1)→√π/2 が示せなくなってしまいました。。。 これさえ示せれば証明できるのですが。。。 どなたかご教授お願いします。

  • 広義の二重積分の求め方

    次の問題が途中までしかわかりません。 問:次の広義の二重積分を求めよ。  ∬[D] (x^2)(e^(-x^2-y^2))dxdy D:{x≧0 y≧0} {Dn}を原点を中心とした半径nの円とDとの共通部分とすれば、{Dn}はDの近似増加列である。ここで、x=rcosθ,y=rsinθに変換し計算すると、 ∫dθ∫(r^2)((cosθ)^2)(e^(-r^2))rdr (θの積分範囲:0→π/2、 rの積分範囲:0→n) =-(π/32)(4e^(-n^2)n^3 + 6e(-n^2)n^2 + 6e(-n^2)n + 3e(-n^2) - 3) となりました。(この計算は少し自信がありません) 残りの、n→∞にとばす計算の仕方がわかりません。 因みに、答えはπ/8 です。 どなたかご教授お願いします。

  • 三角関数の定積分

    ある問題の回答で、サインのN乗のゼロから二分のパイまでの積分と、コサインN乗の同じ範囲の積分は等しい、ということが説明抜きに書いてありました。これは自明のことなのでしょうか?

  • 積分の問題です

    こんにちは。 ∫[-1,1] {x*(4x^3 - 3x)}/√(1-x^2) dx を計算せよ という問題の答えを教えていただきたいです。 自分でやってみたところ、 x=cosθ(0≦θ≦π)と置いて、4x^3-3x=cos3θとなることを利用すると、与式は ∫[0,π] cosθcos3θdθ  =3∫[0,π]sinθsin3θdθ (部分積分) =9∫[0,π]cosθcos3θdθ (もう一度部分積分) となるため、結局答えが0になってしまうのですが、これで合っているでしょうか? どうぞよろしくお願いします。

  • 重積分・積分について

    重積分・積分の問題です。 1 ∫[0,2π]cosmxcosnxdx (m,n∈Z) まず和積公式を使って cosmxcosnx=1/2{cos(m+n)x+cos(m-n)x}とし、 0→2πで積分して 1/2[1/m+n*sin(m+n)x+1/m-n*sin(m-n)x][0→2π] ここまでは解けるのですがここから解くことが出来ませんでした。 積分区間が0のときはsin0=0ですので考えないとしたんですが、 2πの時にするであろう場合分けが思いつきません。 ここから回答をお願い出来ないでしょうか。 また自分の回答に自信があまり無いので 以下の問題の答えを教えていただけないでしょうか。 2 d/dx(arcsinx)^2 =2arcsinx/(√1-x^2) 3 ∫∫∫D dxdydz/{√1-(x^2+y^2+z^2)} (D={(x,y,z)∈R^3|x^2+y^2+z^2≦1}) 被積分関数は1/{√1-(x^2+y^2+z^2)}より x^2+y^2+z^2=1上の点が特異点の広義積分である。 ここでDa:x^2+y^2+z^2≦a^2とおく。ただしa>0とする。 極座標(r,θ,ψ)を定める。 x=rsinθcosψ y=rsinθsinψ z=rcosθ とおくと Daは Ea:0≦r≦a, 0≦θ≦π,0≦ψ≦2πにうつる。 またヤコビアンはr^2sinθである。 計算は省略します。 積分すると4πa^5/5となり、 lim [a→1-0]として 答えは4π/5 でしょうか。 文章読みにくくてごめんなさい。 回答お願いします