翻訳依頼のためのコンピューター関係の書物

このQ&Aのポイント
  • コンピューター関係の書物の翻訳をお願いします。
  • 五つの一般的なリソース(時間、空間、計算、お金、労働)を組み合わせたコンピューターシステムリソースについて詳しく説明します。
  • これらのリソースについての定義は意図的にあいまいであり、問題によって異なります。
回答を見る
  • ベストアンサー

卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の

卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の文章です。 We can describe most computer system resources as a combination of five common resources: time, space, computation, money, and labor. We now study these resources in more detail, with examples of how they arise in real-world problems, and a description of associated performance metrics. Our definitions of these resources are purposely vague, since the exact definition varies with the problem.

noname#111372
noname#111372
  • 英語
  • 回答数1
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • bakansky
  • ベストアンサー率48% (3502/7245)
回答No.1

We can describe most computer system resources as a combination of five common resources: time, space, computation, money, and labor. コンピューター・システムのリソースは5つの共通するリソースの組合せであるということができる。すなわち、時間、空間、コンピュテーション、金銭、労働の5つである。 We now study these resources in more detail, with examples of how they arise in real-world problems, and a description of associated performance metrics. 次にもう少し細かく見ていこう。現実世界の問題としてはどのような形で表れるのかという例と、連合性能基準の記述を示す。 Our definitions of these resources are purposely vague, since the exact definition varies with the problem. これらのリソースの定義は故意に曖昧なものにしてある。というのは、それが扱う問題ごとに厳密な定義は変わるからである。 * 私は情報分野にも素人ですから、associated performance metrics がいかなるものかは存じません。従って、訳語は当てはめただけですので、質問者さまの方で正しい定義で置き換えて下さい。 * 情報分野ではよく「リソース」という言葉を用いるので、resource は「リソース」とだけ訳語を当てました。 * 初めの文の中にある five common resources の common は、ひょっとしたら「一般的な」という意味かもしれないと思われますが、これだけの文章からだけでは判断できませんでした。

関連するQ&A

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Nevertheless, it is still, possible to identify some principles of good design that have withstood the test of time and are applicable in a variety of situations. In Section6.2, we will study some common resources, so that the reader can get some intuition in identifying them in real systems. We will then build up, in Section6.3, a set of tool to help us trade freely available (unconstrained) resources for scarce (constrained) ones. Properly applied, these tools allow us to match the design to the constraints at hand. Finally, in Section6.4, we will outline a methodology for performance analysis and tuning. This methodology helps pinpoint problems in a design and build a more efficient and robust system.

  • 卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の

    卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の文章です。 We call the mean time to complete a task its response time and the mean number of tasks that can be completed in a unit time the throughput. There is an important relationship between throughput and response time that we will use often in this book: the mean number of concurrent activities in a system, also called its degree of parallelism, is the product of the throughput and the response time.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 A system designer must typically optimize one or more performance metrics given a set of resource constrains. A performance metric measures some aspect of a system's performance, such as throughput, response time, cost development time, or mean time between failures(we will define these metrics more formally in Section 6.2). A resource constraint is a limitation on a resource, such as time, bandwidth, or computing power, that the design must obey.

  • 卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の

    卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Consider a building that has two floors, with an escalator to carry people from one floor to the other. Ignoring queuing delays, the response time for a passenger is the mean time taken by the escalator to ascend or descend one floor. The throughput (bandwidth) is the mean number of passengers that can be loaded or per second. Suppose that an average of five people step on the escalator in one second, and that the escalator takes an average of 10 seconds to go up one floor. The response time for a passenger, therefore, is 10 seconds, and the throughput of the escalator is 5 passengers/second. Thus, the degree of parallelism, which is the mean number of passengers carried simultaneously, is 5*10=50. To see this, mark a passenger with a daub of red paint as she steps on the escalator. In the ten seconds that she takes to reach the top, we expect that fifty more passengers boarded the escalator. Thus, when she steps off, the escalator carries an average of fifty passengers, which is its degree of parallelism.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。翻訳サイト

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。翻訳サイトのコピペはご遠慮ください。 In any system, some resources are less constrained than others. We call the most constrained resource in a system(or the binding constraint) its bottleneck. System performance improves if and only if we devote additional resources to a bottlenecked resource. Conversely, decreasing the amount of an unconstrained resource does not adversely affect performance. When we relieve one bottleneck, however, it is possible for another resource to become a bottleneck. Thus, we must remove the bottlenecks one by one until all the resources are equally constrained. We call such a system a balanced system. A balanced system is optimal, in that we fully utilize every component. However, in practice, we rarely achieve balanced systems. Rapid changes in technology, market constraints, and customer expectations mean that a system's components are almost constantly in flux, with the bottleneck moving from place to place in the system.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Computation refers to the processing that can be done in a unit time. Using processors in parallel can increase computational power (as can waiting for a year or two― a reasonable rule of thumb is that computational speed doubles every 18 months!). We measure computation in millions of instructions per second (MIPS). We assume here that every instruction takes the same time to execute, which is more or less true for reduced-instruction-set (RISC) processors. In mid-1996, even low-end Intel 80486-class microprocessors processed about 30 million instructions per second. At the high end, Alpha processors from Digital Equipment processed more than 500 million instructions per second. With operating-system overheads, however, only about 80% of this rate is available to applications.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 If we could quantify and control every aspect of a system, then system design would be a relatively simple matter. Unfortunately there are several practical reasons why system design is both an art and a science. First, although we can quantitatively measure some aspects of system performance, such as throughput or response time, we cannot measure others, such as simplicity, scalability, modularity, and elegance. Yet a designer must make a series of trade- offs among these intangible quantities, appealing as much to good sense and personal choice as performance measurements. Second, rapid technological change can make constraint assumptions obsolete. A designer must not only meet the current set of design constraints, but also anticipate how future changes in technology might affect the design. The future is hard to predict, and a designer must appeal to instinct and intuition to make a design "future-proof." Third, market conditions may dictate that design requirements change when part of the design is already complete. Finally, international standards, which themselves change over time, may impose irksome and arbitrary constraints. These factors imply that, in real life, a designer is usually confronted with a complex, underspecified, multifactor optimization problem. In the face of these uncertainties, prescribing the one true path to system design is impossible.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 In real life, of course, designs must try to simultaneously optimize many, possibly conflicting metrics (such as reliability, performance, and recyclability) while satisfying many constraints (such as the price of the car and the time allowed for the design).

  • 卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の

    卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Time can constrain a design in many ways. For example, a user may require a task to complete before a given time, or may want to limit the time taken for a packet to travel from a source to a destination. At a different level, there may be a time constraint on how long it can take to design and build a system (time-to-market). Or, we may want to maximize the mean time between failures. We now study some standard ways to measure the use of time in a system.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 We call a freely available resource an unconstrained resource, and a resource whose availability determines overall system performance a constrained resource. In this system, the link's bandwidth constrains the overall performance, as measured by the effective throughput of the link. This, therefore, is the constrained resource. In this example, the computer’s processing speed and money size are unconstrained resources.