• ベストアンサー
  • すぐに回答を!

翻訳をお願いしたいです。コンピューター関係の書物の文章です。

翻訳をお願いしたいです。コンピューター関係の書物の文章です。 We call a freely available resource an unconstrained resource, and a resource whose availability determines overall system performance a constrained resource. In this system, the link's bandwidth constrains the overall performance, as measured by the effective throughput of the link. This, therefore, is the constrained resource. In this example, the computer’s processing speed and money size are unconstrained resources.

noname#110975
noname#110975

共感・応援の気持ちを伝えよう!

  • 英語
  • 回答数2
  • 閲覧数56
  • ありがとう数10

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
noname#110863
noname#110863

すみません。もう一度掲載です。 かなりの意訳です。(linuxのように、日本語でオープンソースと呼ばれているコンピュウータのプログラムソースの話のようです。) We call a freely available resource an unconstrained resource, and a resource whose availability determines overall system performance a constrained resource. 自由に利用できるリソースのことを制約のないリソースと言い、どの程度利用できるかということによって全般的なシステムの能力が決まってしまうリソースのことを制約のあるリソースと言っています。 In this system, the link's bandwidth constrains the overall performance, as measured by the effective throughput of the link. このシステムでは、全体の処理能力は、リンクの処理能力(一定時間内に処理できる能力)に制約を受けます。ちょうどリンクの実効スループット(1秒あたりのトランザクション数)で測定されてしまうように。 This, therefore, is the constrained resource. ですから、これが制約のあるリソースということです。 In this example, the computer’s processing speed and money size are unconstrained resources. この例では、そのパソコンの処理速度とかかる費用は制約のないリソースということになります。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
noname#110863
noname#110863

かなりの意訳です。(linuxのように、日本語でオープンソースと呼ばれているコンピュウータのプログラムソースの話のようです。) We call a freely available resource an unconstrained resource, and a resource whose availability determines overall system performance a constrained resource. 自由に利用できるリソースのことを制約のないリソースと言い、どの程度利用できるかということによって全般的なシステムの能力が決まってしまうリソースのことを制約のあるリソースと言っています。 In this system, the link's bandwidth constrains the overall performance, as measured by the effective throughput of the link. このシステムでは、全体の処理能力は、リンクの処理能力(一定時間内に処理できる能力 )に制約を受けます。ちょうどリンクの実効スループット(1秒あたりのトランザクション数)で測定さ れてしまうように。 This, therefore, is the constrained resource. ですから、これが制約のあるリソースということです。 In this example, the computer’s processing speed and money size are unconstrained resources. この例では、そのパソコンの処理速度とかかる費用は制約のないリソースということになり ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 A system designer must typically optimize one or more performance metrics given a set of resource constrains. A performance metric measures some aspect of a system's performance, such as throughput, response time, cost development time, or mean time between failures(we will define these metrics more formally in Section 6.2). A resource constraint is a limitation on a resource, such as time, bandwidth, or computing power, that the design must obey.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。翻訳サイト

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。翻訳サイトのコピペはご遠慮ください。 In any system, some resources are less constrained than others. We call the most constrained resource in a system(or the binding constraint) its bottleneck. System performance improves if and only if we devote additional resources to a bottlenecked resource. Conversely, decreasing the amount of an unconstrained resource does not adversely affect performance. When we relieve one bottleneck, however, it is possible for another resource to become a bottleneck. Thus, we must remove the bottlenecks one by one until all the resources are equally constrained. We call such a system a balanced system. A balanced system is optimal, in that we fully utilize every component. However, in practice, we rarely achieve balanced systems. Rapid changes in technology, market constraints, and customer expectations mean that a system's components are almost constantly in flux, with the bottleneck moving from place to place in the system.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 By explicitly identifying performance metrics and resource constraints, a system designer ensures that the design space is well defined, the solution is feasible, and the design is efficient. She can then trade unconstrained resources for constrained ones to maximize the design's utility at the least cost. Continuing with our example, a system designer might use the PC's surplus computational power to compress data as much as possible, to best exploit the limited capacity of the transmission link. A well-designed system maximizes achievable performance while still satisfying the resource constraints.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Nevertheless, it is still, possible to identify some principles of good design that have withstood the test of time and are applicable in a variety of situations. In Section6.2, we will study some common resources, so that the reader can get some intuition in identifying them in real systems. We will then build up, in Section6.3, a set of tool to help us trade freely available (unconstrained) resources for scarce (constrained) ones. Properly applied, these tools allow us to match the design to the constraints at hand. Finally, in Section6.4, we will outline a methodology for performance analysis and tuning. This methodology helps pinpoint problems in a design and build a more efficient and robust system.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 System design is important not only in computer systems, but also in other areas, such as automobile design. For example, a car designer might try to maximize the reliability of a car(measured in the mean time between equipment failures) that costs less than $10,000 to build. In this example, the mean time between failures measures performance, and the resource constraint is money. In real life, of course, designs must try to simultaneously optimize many, possibly conflicting metrics (such as reliability, performance, and recyclability) while satisfying many constraints (such as the price of the car and the time allowed for the design).

  • 卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の

    卒論に使用するため、翻訳をお願いしたいです。コンピューター関係の書物の文章です。 We call the mean time to complete a task its response time and the mean number of tasks that can be completed in a unit time the throughput. There is an important relationship between throughput and response time that we will use often in this book: the mean number of concurrent activities in a system, also called its degree of parallelism, is the product of the throughput and the response time.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 In any system, some resources are more freely available than others. For example, consider a high-end personal computer connected to the Internet with a 28.8-Kbps modem. In this system, for tasks that require only a moderate amount of processing, such as reading email, the rate at which the computer can process information far exceeds the capacity of the transmission link.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 Consider a building that has two floors, with an escalator to carry people from one floor to the other. Ignoring queuing delays, the response time for a passenger is the mean time taken by the escalator to ascend or descend one floor. The throughput (bandwidth) is the mean number of passengers that can be loaded or per second. Suppose that an average of five people step on the escalator in one second, and that the escalator takes an average of 10 seconds to go up one floor. The response time for a passenger, therefore, is 10 seconds, and the throughput of the escalator is 5 passengers/second. Thus, the degree of parallelism, which is the mean number of passengers carried simultaneously, is 5*10=50. To see this, mark a passenger with a daub of red paint as she steps on the escalator. In the ten seconds that she takes to reach the top, we expect that fifty more passengers boarded the escalator. Thus, when she steps off, the escalator carries an average of fifty passengers, which is its degree of parallelism.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 If we could quantify and control every aspect of a system, then system design would be a relatively simple matter. Unfortunately there are several practical reasons why system design is both an art and a science. First, although we can quantitatively measure some aspects of system performance, such as throughput or response time, we cannot measure others, such as simplicity, scalability, modularity, and elegance. Yet a designer must make a series of trade- offs among these intangible quantities, appealing as much to good sense and personal choice as performance measurements. Second, rapid technological change can make constraint assumptions obsolete. A designer must not only meet the current set of design constraints, but also anticipate how future changes in technology might affect the design. The future is hard to predict, and a designer must appeal to instinct and intuition to make a design "future-proof." Third, market conditions may dictate that design requirements change when part of the design is already complete. Finally, international standards, which themselves change over time, may impose irksome and arbitrary constraints. These factors imply that, in real life, a designer is usually confronted with a complex, underspecified, multifactor optimization problem. In the face of these uncertainties, prescribing the one true path to system design is impossible.

  • 翻訳をお願いしたいです。コンピューター関係の書物の文章です。

    翻訳をお願いしたいです。コンピューター関係の書物の文章です。 we measure space in kilobytes(KB) or megabytes(MB), and bandwidth in kilobit/second(Kbps) or megabits/second(Mbps). Unfortunately, while a kilobit/second means 1000bits/second, a kilobyte is not 1000bytes, but 1021bytes. Similarly,1Mbps is 1,000,000bps, but 1megabyte is 1,048,576bytes. For back-of-envelope calculations, we can assume that an 8-Mbps link carries 1megabyte in 1second. However, for more precise calculations, a careful engineer must make the necessary conversions. In this book, we will always do so.