• ベストアンサー
  • すぐに回答を!

関数の問題です。

写真のように(1)、(2)、(3)はそれぞれ関数Y=ax^2、Y=4、Y=1のぐらふである。 (1)と(2)の交点のx座標の小さいほうからA、Bとし(1)と(3)の交点のうちx座標が負の点Cとする。 (1)AB=8のとき点Bの座標とaの値を求めよ。またこのとき点Cの座標と直線BCの式を求めよ。 (2) (1)のとき傾きが正の原点を通る直線(4)が写真のように(2)、(3)および線分BCと交わる点をそれぞれP、Q、Rとする。BP:CQ=1:2のとき点Rの座標と三角形BPRの面積を求めよ。 (1)はすべてわかったのですが(2)がわかりません。明日提出なのでわかるかた教えてください

noname#110002
noname#110002

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

まず三角形BPRと三角形CQRは相似ですから BR:CR=BP:CQ=1:2です。 また三角形BSRと三角形CTRも相似ですから SR:RT=BR:CR=1:2になります。 STの長さは3なので、SR=1になります。 こんな感じで求めることが出来ます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 R( 、3)というのはわかりました。 代入したらx=4になったのですが違いますよね?

その他の回答 (2)

  • 回答No.2

点Rから(2)、(3)へ下ろした垂線の足をS、Tとし 三角形BSRと三角形CTRを考えましょう。 SR:RTはすぐに求まるのでここからRのY座標が出せます。 それを直線BCの式に代入すれば今度はRのx座標が出せます。 ここまで出来れば解けるのでは・・・。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます SR:RTはすぐに求まるのでここからRのY座標が出せます。 srをどうやって求めればよいのでしょうか?

  • 回答No.1

三角形BPRとCQRは相似 だからどうなると考えると解ける

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学 関数

    下の図の(1)、(2)、(3)は、それぞれ関数y=ax2、y=4、y=1のグラフである。 (1)と(2)の交点のx座標の小さい方からA、Bとし、(1)と(3)の交点のうちx座標の負の点をCとする。 (1) AB=8のとき、点Bの座標とaの値を求めよ。   また、このとき、点Cの座標と、直線BCの式を求めよ。 (2) (1)のとき、傾きが性の原点を通る直線(4)が、右の図のように(2)、(3)および線分BCと    交わる点をそれぞれP、Q、Rとする。 BP:CQ=1:2のとき、点Rの座標と三角形BPR    の面積を求めよ。 解答よろしくお願いします。 

  • 下の図(1)(2)(3)はそれぞれ関数y=ax^2、y=4、y=1のグラフである。

    下の図(1)(2)(3)はそれぞれ関数y=ax^2、y=4、y=1のグラフである。(1)と(2)の交点のx座標の小さい方からA、Bとし、(1)と(3)の交点のうちx座標が負の点をCとする。 AB=8、点B(4、4)とa=1/4の時、傾きが正の原点を通る直線(4)が下の図のように(2)、(3)および線分BCと交わる点をそれぞれP、Q、Rとする。 BP:CQ=1:2のとき、点Rの座標の求め方を教えてください。 △BPR∽△CQRであるからBP:CQ=PR:QR BP:CQ=1:2より PR:QR=1:2。よって点Rのy座標は3と求めているのですがどうして相似比から座標が求まるのでしょうか?

  • 中学校の二次関数を至急教えてください

    (1)図で点P、Qは放物線3分の1x^2 と点A(-6,0) を通る傾きが正の直線との交点である。 AQ:QP=1:3のとき点Pの座標はいくらか。 (2)図で直線lと放物線y=kx^2(kは正の定数)の交点をそれぞれ A、B、lとx軸との交点をCとする。 A、Bのx座標をそれぞれa、b、Cのx座標を-4、 AB:BC=8:1とするとき、 (1)aとbの値はいくらか。 (2)三角形OABの面積が64のとき、kの値はいくらか。 (3)図においてy=2x^2のグラフと直線y=2x+4との交点をそれぞれA、Bとする。また、y軸に平行な直線lと直線AB、放物線、x軸との交点をそれぞれP、Q、Rとする。 このとき、点Pが線分AB上にあるとき、PQ=QRとなるような点Pのx座標の値はいくらか。 数学が苦手なので分かりません、よろくおねがいします。

  • 関数

    直線Lと点A(-1、-2)がある。直線Lとx軸との交点をB,直線Lとy軸との交点をCとする。△ABOの面積が△AOCの面積の8倍となるとき、直線Lの傾きを求めなさい。ただし、点Bのx座標、点Cのy座標は正の数とする。

  • 二次関数

    放物線y=x^2上の点A(-1,1)で接し、傾き-2の直線をlとする。0<a<のとき、x座標が1-aである放物線上の点Bとし、Bを通り傾きが2の直線をmとする。直線mと放物線との交点でBと異なるものをCとし、2直線lとmの交点をPとする。 (1)直線mの方程式をy=2x+bとおくとき、bをaを用いて表しなさい。 この問題の○を◎を用いて表しなさいの意味はなんとなくわかるのですがこの問題がわかりません。 (2)C,Pのx座標をそれぞれaを用いて表しなさい  この問も(1)と同じ理由でわかりません (3)A,B,C,Pからx軸にそれぞれ垂直AD,BE,CF,PHを引く。このときHD^2=HExHGが成り立つことを示しなさい  グラフを書いてやってみましたが、全然わかりません

  • 二次関数

    図のように、直線と放物線y=2分の一xの2乗の交点をA,Bとする。A,Bのx座標がそれぞれ-1、2のとき、つぎの問いに答えなさい。 問い 放物線上に点B以外の点Cを、三角形OABと三角形OACの面積が等しくなるようにとるとき、点Cの座標を求めなさい。 自分なりに考えたのですが、OAの部分が等しいので、線分OAと平行な線をひき、点Cを決める (自分で書いてみたんですが、うまくOAとBCが引けません) そして、線分OAの傾きを調べる あとは点Cの座標を調べたいのですが、 ここからどうすればよいのかわかりません。 考え方解き方を教えてください。

  • 座標の問題

    放物線A:y=2x^2+6x-8と直線B:y=5x+13がある。放物線AとY軸との交点をa、直線BとY軸の交点をb、放物線Aと直線Bとの交点でx座標、y座標とも正である点をcとし、a、b、cを頂点にした三角形を三角形abcとする。このとき、点bを通り三角形abcの面積を2等分する直線とX軸の交点のx座標はいくらか。 という問題があるのですが、AとBにそれぞれx=0を代入し、aとbを出すとこまでは出来たのですが、cを出すのがわかりません。 cの出し方とその後の計算方法を教えてください。

  • 中2数学・一次関数の問題

    添付しました図のように、2直線y=-x+10、y=2x+10があり、3点A、B、Cは直線と座標軸との交点である。点Pは線分AC上をAからCまで、点Qは線分CB上をCからBまで動く。2点P、Gは同時出発してから、それぞれ一定の速さで動き、5秒後に同時にC、Bに到着する。(次の問いに答えなさい。) (1)出発してからs秒後に、線分PQの中点がy軸上にくる。このとき、sの値を求めなさい (2)傾きがmとnの2直線が垂直に交わる時、mn=-1である。このことを利用してPQとBCが垂直になるのは、出発してから何秒後か求めなさい。 この問題の「解き方」と「解答」をわかりやすく教えていただけないでしょうか? ☆よろしくお願い申し上げます。☆

  • メジアン43番についてーー至急解答をお願いします

    メジアン43番についてーー至急解答をお願いします 座標平面上に4点O(0,0) A(1,0) B(1,t) C(0,t)がある。 直線y=2x と線分BCの交点をP,  Pを通る傾き-2の直線と線分ABの交点をQ Qを通る傾き2の直線とx軸との交点をRとする。 四角形OPQRの面積の最大値とそのときのtの値を求めよ。 明日までに解かなければならないので、どうか解説をお願いします。

  • メジアン43番についてーー至急解答をお願いします

    メジアン43番についてーー至急解答をお願いします 座標平面上に4点O(0,0) A(1,0) B(1,t) C(0,t)がある。 直線y=2x と線分BCの交点をP,  Pを通る傾き-2の直線と線分ABの交点をQ Qを通る傾き2の直線とx軸との交点をRとする。 四角形OPQRの面積の最大値とそのときのtの値を求めよ。 明日までに解かなければならないので、どうか解説をお願いします。