• ベストアンサー

線形代数の問題で・・・

頂点Viを出て頂点Vjに至る長さkの歩道の総数は、行列A^kの(i,j)成分に等しいことを、kに関する帰納法を用いて証明せよ。 という問題を出されました。しかし、いくら考えてもわかりません。どうか、教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • kony0
  • ベストアンサー率36% (175/474)
回答No.2

行列Aは正方行列で、その次元はnとします。(nに本質的な意味は無いです。別にnが加算無限でもよい・・・のかも?) そして、A(i,j)=1 (if Vi→Vjのパスがある場合), 0 (else) で定義されているんでしょう。 つまり、存在するすべての枝の長さは1であるかと思います。 ちなみに、枝が無向グラフなら、行列Aは対称行列です。 「頂点Viを出て頂点Vjに至る長さkの歩道の総数」は Σ(l:l→jの枝がある)「頂点Viを出て頂点Vlに至る長さk-1の歩道の総数」 =Σ(l=1,2,...,n)「頂点Viを出て頂点Vlに至る長さk-1の歩道の総数」×A(l,j) ということで、私的には解決。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.1

頂点はいくつあって,どのように配置されているのですか?行列Aはサイズはいくつで,どのような行列なんですか?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 線形代数の問題で・・・

    線形代数の問題で解答がない証明問題でどうしてもわからない問題があるので教えてください。 問題内容は、  (i,j)成分がaij = |i-j|であるn次正方行列Aについて、 |A|= {(-1)^(n-1)}(n-1)2^(n-2) となることを証明せよ。 です。 ちなみに問題は教養の線形代数という本にある問題です。 教えてください。 お願いします。

  • 数学的帰納法を用いた証明(線形代数)

    大学生の者です。以下の問題を解いていただける方いらっしゃるでしょうか?線形代数の問題です。 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 問:n>=2のとき、次のn次正方行列について A=[ 1 a a ・・・ a : 0 1 a a ・・・ a : 0 0 1 a a・・・ a :     ・・・   :0 0 ・・・ 0 1](aは整数) (見づらいかと思いますが上三角行列です。対角成分が1、それより上の部分が a です) A^p の ( i , j ) 成分を a<p>_i j と表す。i < j のとき、a<p>_i j は                a<p>_i j <= (1 + na)^p - 1 / n  を満たすことを数学的帰納法を用いて証明せよ  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ という問題です。どうぞよろしくお願いします。

  • 線形代数の問題

    Aはn次正則行列で、n次正方行列BはAの逆行列である。またn次正方行列CはBの第i行と第j行を交換してできる行列であるとする。このとき、 Cの逆行列の第(i,j)成分はAの成分を用いて表すことができる。という問題が解けません。問題を式にしてみると B=A-1(Aの逆行列)、C=Bt(Bの転置)でこれはCの逆行列を求めるので C=Btの式の両辺にCの逆行列をかけて左辺を単位行列にして求めるんでしょうか?よくわかりません。見にくくてすみません。お願いします。

  • 線形代数学について

    次の行列の(i,j)成分aijをクロネッカーのデルタを用いて表せ A=|010| |101| |010| この問題の回答の導き方を教えてください

  • 線形代数の問題です。

    線形代数の問題です。 1.U,U'がそれぞれK上のn次元ベクトル空間とする。このとき線形写像f:U→U'が単射であることと全射であることが同値であることを証明せよ。 2. 行列Aの固有値をλ1,λ2,…λnとしたとき、 行列A^2の固有値は、Aの固有値をそれぞれ2乗したもの以外には存在しない。これは正しいか 3.Aのすべての成分が正でかつ行列式が正なら、Aの逆行列の成分もすべて正であることを示せ。 以上です。よろしくお願いします。

  • 線形代数学(命題??)

    自然数nに対して、Iをn次単位行列とし、Aをその行列式が0でない任意に与えたn次正方行列とする。n次正方行列XがAの逆行列であるとは、XA=Iを満たすこととする。この場合、XA=Iが成立すれば、AX=Iも成立する。この命題の証明に関して以下の問いに答えよ。 XA=Iが成立しているものとする。そして、ベクトルa_1,a_2,・・・,a_n( _ はaに下付きでnがついていることを表す)で行列Aを構成するn個の列ベクトルを表すものとする。すなわち、(a_j)_iでベクトルa_jの第i成分を表し、A_ijで行列Aの第i,j成分を表すとすれば、i,j=1,2,・・・,nに対して、 (a_j)_i=A_ij となるものとする。また、ベクトル0およびOで、それぞれ、全ての成分が0であるベクトルおよび行列を表すものとする。 (1)(AX-I)A=Oが成立することを示せ。 (2)XA=Iを用いて、ベクトルa_1,a_2,・・・,a_nが、1次独立であることを示せ。 (3)一般に、n次元ベクトル空間において、任意のn+1個のベクトルは1次従属である。この関係と(2)の結果を用いて、n次元ベクトル空間の任意のベクトルを、ベクトルa_1,a_2,・・・,a_nの1次結合で表すことができることを示せ。 (4)(3)の結果を用いて、任意のベクトルyに対して、ベクトルy=Ax(xはベクトル)を満たすベクトルxが存在することを示せ。 (5)n次元ベクトル空間において、行列Bが任意のベクトルfに対してBf=0(fと0はベクトル)を満たすならば、B=Oとなることを示せ。 (6)(1)と(4)の結果を用いて、任意のベクトルyに対して、(AX-I)y=0が成立することを示せ。さらに、(5)の結果を用いて、AX=Iが成立することを示せ。 上で示した問題に関する質問です。 (1)を解くにあたって、AXにIを代入するとダメですか? 文章には、「この命題の証明に関して以下の問いに答えよ」とあるので、この問題全体はAX=Iということを証明する問題で、それぞれの問題を解くのにこれは使用したらダメなのかなと思ってしまったのですが…。 どうなのでしょうか? もしダメならば、(1)の問題は、どのように解いていくのがベストなのでしょうか。 また、他にも文章中に出ている条件で使用してはいけないものってあるのでしょうか。 よく分からない問題です。 (1)に関して、もしAX=Iを代入してよいのならば、(1)で示されている 式が成立するのは一目瞭然ですし・・・ 他の問題に関しても何かヒントをいただけるとうれしいです。 よろしくお願いします。

  • 線形代数について

    次の行列のすべての固有値と、それぞれの固有値に対応する固有ベクトルをひとつずつ求めよ。 (1)第1行が(1,2,2)、第2行(-2,5,2)、第3行が(1、-2,0)である行列 (2)(i,j)成分が|i-j|を2で割ったときの余りに等しい三次行列 という問題がわかりません。誰かわかる人がいたら教えてください。お願いします。

  • 大学の線形代数の問題

    この問題の回答を教えてください。。。 P(i,j;c) = I + c·Ei,j (i,j = 1,2,3、c は実数)を基本行列とする。ただし、I は、 3 次単位行列、Ei,j は、(i,j) 成分が 1 でそれ以外は、0 である 3 次の行列単位とす る。このとき、次の行列を、P(i,j;c) のいくつかの積で表せ。 1 x y 0 1 z 0 0 1

  • 線形代数の証明問題

    n次正方行列Aのi行j列成分aijが、すべてのi, jについてaij+aji=0を満たし、 nが奇数のとき、|A|=0となることを示すにはどうしたらよいでしょうか。

  • 線形代数

    行列に関する問題でわからない問題がいくつかあります。 (1)任意の2次実対称行列Aに対して、B^3=Aとなる実2次行列B が存在することを示せ。 (2)次の命題が正しければ証明し、正しくなければ反例をあげよ: 任意の実2次行列Aに対してB^3=Aとなる実2次行列Bが存在する。 (3)整数を成分とする2次正方行列AのべきA^nがn→∞のとき収束するならば、 A^2は零行列であるかまたはA^2=Aであることを証明せよ。 以上です。よろしくお願い致します。