• ベストアンサー

極限値を求める

lim[n→∞]{1-2/(n-1)}^(n-1) を求めよ、という問題です。 lim[n→∞](1+1/n)^n=e なので、それに近い形になると思うのですが…。 とりあえず、a_n=(1-2/n)^nとおいて、二項展開しました。 が、正負の符号が+,-,+,-,…となり単調増加か減少かすら分かりません。 8項ぐらい計算すると、一応1未満の値に収束しそうなのですが…行き詰っています。 どなたか教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • proto
  • ベストアンサー率47% (366/775)
回答No.2

n→∞のときだけでなく、n→-∞のときにも   lim[n→-∞]{(1+(1/n))^n} = e が成り立つことを知っていますか? この事実を用いれば、 -(n-1)/2=mと置けば、n→∞のときm→-∞で、   (1-2/(n-1))^(n-1) = (1+(1/m))^(m/2)            = ((1+(1/m))^m)^(1/2) → e^(1/2)  (m→-∞) より、   lim[n→∞]{1-2/(n-1)}^(n-1) = √e とわかります。

tksmsysh
質問者

お礼

ご回答ありがとうございます。

その他の回答 (1)

  • 4028
  • ベストアンサー率38% (52/136)
回答No.1

2/(n-1)=1/h h→∞ とおいて解いてみてください。 lim[h→∞](1+1/h)^h=e が使える形になります。

tksmsysh
質問者

お礼

ご回答ありがとうございます。

関連するQ&A

  • Σ[n=0..∞](-1)^n5^n/(2n)!の和は?

    Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか?

  • 極限値の問題です

    以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。

  • 自然対数の底と極限

    自然対数の底 e = lim(n→∞) (1+ (1/n))^n というのは、周知の事実である(ときには定義)と思います。 現在、極限 lim(n→∞) (1- (1/n))^n を考えています。 グラフ描画ソフトなどで確認した場合、どうもこれは 1/e に収束するようなのですが、どのように計算したらよいのかがわかりません。 どなたかご教授お願いします。 ※n を -nと置き換えると、 lim(n→-∞) (1+ (1/n))^(-n)となり、一見 1/eに収束するように見えるのですが、 n→-∞となっています。 この疑問は、 lim(n→-∞) (1+ (1/n))^nとlim(n→∞) (1+ (1/n))^nがなぜ一致するのか、という問題と言い換えることができます。

  • 有界な単調数列の証明(再掲)

    こちらの皆様のご指導のもと、以下の単調数列の証明問題を解いてみました。 証明が変なところがあれば、ご指導よろしくお願いします。 【問題】 数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は 有界な単調数列であるか? 理由とともに、単調な場合には、 単調増加であるか単調減少であるかについても求めよ。 【証明】 まず、有界かどうかについて証明する。 n→∞とすると、 lim[n→∞] { 1-(1/n) }/{ 1+(1/n} } =lim[n→∞] (n-1+2-1)/(n+1) =lim[n→∞] 1-2/(n+1)=1 よって、有界。 つぎに単調増加について証明する。 (n-1)/(n+1) = (n+1-2)/(n+1) = 1-2/(n+1)と変形させることにより、 1より小さいことがわかる。 また、2/(n+1)は単減少であることより、-2/(n+1)は単調増加。 よって、1-2/(n+1)も単調増加であることが証明される。 ∴数列{ 1-(1/n) }/{ 1+(1/n} }[n=1,2,3,...]は、 有界な単調増加である。

  • 極限値に関する質問です。

    極限値に関する質問です。 以前、質問させて頂いた内容を実際に解いて見ようと思ったところ まったく出来ませんでした・・・ 以前の質問内容:http://okwave.jp/qa/q5588555.html 【問題】 (1)lim[n→∞] n^(1/log n):Ans.)eに収束 (2)lim[n→∞] (log n)^(1/log n):Ans.)1に収束 (3)lim[n→∞] n^(1/log log n):Ans.)∞に発散 (1)に関しては、eの定義なので  ・e=lim[n→∞](1+1/n)^n  ・e=lim[t→0](1+t)^1/t ということは、知っているのですがなぜlim[n→∞] n^(1/log n)がeに収束するのでしょうか? (2)と(3)は・・・状態です。 以上、途中回答も出せず、Googleで調べてもヒットしない状態です・・・ 解き方や考え方を教えて頂けるとありがたいです。よろしくお願い致します。

  • 数列の極限について

    数列{a_n}を a_(n+1)=√a_n+1 a_1=1 によって定められる時、lim_n→+∞ a_n が存在するか否か考察せよ。即ち存在するならば存在することを示し、可能ならばその値を求め、存在しないならそのことを示せ。 という問題なのですが、一応自分は、上記の漸化式が収束すると仮定し、特性方程式で x=1±√5/2という答えを導き、a_1=1より、この数列は下から単調に増加しているから、解x=1+√5/2を持つ。 というところまでわかったのですが、ここから先がどうやったらいいかわかりません。 途中式とかできるだけ詳しい回答をよろしくお願いします。

  • 極限の問題

    二項展開を用いて、a>1のときに lim[n→∞]a^n=∞を証明したいのです。 まず、a=(1+α)、(α>0)とおいて、二項展開より(1+α)^n=Σ[r=0→n](nCr)(α^r)となるのですが、ここからどのように極限まで持っていけばいいのか分かりません。よろしくお願いします。

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • 二項展開

    lim (1+1/n)^n^2 n→∞ を求めるにあたって、二項展開して (1+1/n)^n^2=1+n^2×1/n...>1+n としてから計算するとなっているんですが、 「二項展開をして」というところがわかりません。 二項定理を使うんですか? でも、n^2のところはどうするんだろう・・・ 誰か教えてください (^_^;)

  • 極限です。pert2・・・・

    数列sin(^n)θの極限をもとめよただし-π/2≦θ≦π/2。 第n項が次の式で表される数列の極限を調べよ。 {r^(2n)-2^(2n+1)}/{r^(2n)+4^n} {a^(n+1)+b^(n+1)}/{a^(n)+b^(n)}      ただしa,b共に正の定数 次の無限級数の収束発散を調べなさい。 ∞ Σ2/{√(n+2)+√n} n=1 |x|<1/2のとき無限級数の和を求めよ。 1+3x+7x^2+15x^3+・・・・・+(2^(n)-1)x^(n-1)+・・・ lim[√{(1/x)+1}-√{(1/x)-1}]  の極限値を求めよ。 x→+0 x→∞のときf(x)=√(x^2 +1)-axが収束するような正の定数aの値とそのときの lim f(x)を求めよ x→∞ 以上です。おねがいします。 何度もごめんなさい。