• 締切済み

0と1/n(nは自然数)の全部はコンパクト?

大学生です。 {0と1/n(nは自然数)の全部}はRのコンパクト集合 だと習いました。ここでは、「0」を含んでいることがポイントだそうで、「収束先の開集合を含むと、有限個の開集合で覆える」とのことです。 しかし、0を含んでいようと含んでいまいと、 例えば、(-1,2)のような有限個(この場合「1個」)の開集合ですっぽり覆える気がするのです…。 恐らくコンパクト集合の概念をちゃんと理解していないことに起因する誤解なのでしょうが、何が間違っているのでしょうか?

みんなの回答

  • 33550336
  • ベストアンサー率40% (22/55)
回答No.1

コンパクトの定義は有限個の開集合で覆える、ではなく、 任意の開被覆から有限部分被覆がとれる、です。 実際任意の空間はひとつの開集合(全体)で覆えるから、その定義だと コンパクトという概念が意味をなさない。

FLESHWORDS
質問者

お礼

なるほど、「任意の」開被覆がポイントなのですね。 では、{1/n(nは自然数)の全部}はRのコンパクト集合でない、というのは、 1/nが可算無限個存在するため、開被覆{(1/(n+1),1/(n-1)):nは自然数}から有限部分被覆が取れない、という感じでしょうか? なんとなくイメージはついたような気がします。

関連するQ&A

  • コンパクトとは?

    コンパクト、について調べると、 ・Aの任意の開被覆(開集合の族で覆ったもの)から、有限個の開集合を選んで、新しい開被覆を作ることができる。 という難しい定義があるのですが、一方で ・任意の数列が収束する部分列を持つ集合 というのもあったり ・有界な閉集合 というのもあったり。 どういう関係になっているのでしょうか。全部同じでしょうか?(3番目は直感的にわかりやすいです)

  • 開集合がコンパクトでない理由

    コンパクトとは、有限と無限に関するもの(有界閉集合)である ことは何となく分かっているつもりです。 しかし、開集合がコンパクトでない理由がいまいち分かりません。 たとえば、よく教科書に掲載されている例として 開区間(-1,1)を、Xn=(-n/(n+1),n/(n+1)) (n∈N)  ※Nは自然数全体 で覆うというものがあり、これは有限部分被覆を持たないというものです。 でも、Xnの最後は(-1,1)なので、この一つをとりだせば それだけで有限被覆となると思います。 この矛盾はどこから来るのか分かりません。 どなたか、ご教授ねがいます。

  • コンパクトの判定についての質問

    こんにちは。 B^2 = {(x,y)∈R^2 | x^2 + y^2 ≦1} がコンパクトかどうかハイネボレルの定理を使わないで判定せよ という問題がわかりません。 ハイネボレルの定理から多分コンパクトなんだろうけど、それをどうやってハイネボレルを使わないで証明したらよいのでしょうか?? 定義に基づいてやろうとしたのですが、開被覆としてU_n=((0,0),1-(1/n)) n∈Nを考えたのですが、これでは有限個の和集合でB^2が作れなくて困ってます。 どなたかアドバイスお願いします

  • 距離空間におけるコンパクト性

    距離空間において、コンパクト集合と点列コンパクト集合が同値であることの証明をできるだけ理解したいのですが、参考書のの証明がイマイチ理解できません。 (参考書の証明) (1) コンパクト距離空間Xの任意の点列{x_n}n=1,2,…が収束部分列をもつことを示す。 この点列に対して、A_k={x_k,x_k+1,…}とおき、その閉包(A_k)'全体のなす集合族{(A_k)'}を考える。 {(A_k)'}の各元(A_k)'は空でない閉集合で、単調減少(A_1)'⊃(A_2)'⊃…(A_k)'⊃…であるから有限交叉性をもつ。したがって、Xのコンパクト性より共通部分(A_k)'は空でない。共通部分(A_k)'から1点xを選べば、xは(A_1)'に属するからd(x_(n_k),x)≦1/kなるx_(n_k)∈A_kが存在する。このとき、n_k≧kより数列{n_k}は異なる自数数を無限個含むから、{x_(n_k)}は{x_n}の部分列であり、また明らかにxに収束する。よって、点列{x_n}は収束部分列をもつ。 (2) 距離空間Xが点列コンパクトであると仮定し、Xの任意の開被覆{V_λ}が有限部分被覆をもつことを言う。最初に、{V_λ}に対して、ε>0が存在して、任意のx∈Xのε近傍U(x;ε)が{V_λ}のどれかの元V_λに含まれることを示す。このようなεを開被覆{V_λ}のルベーグ数とよぶ。ルベーグ数が存在しないならば、各kに対し、その1/k近傍がどの{V_λ}の元にも含まれないような点x_k∈Xをとることができる。こうして得られた点列{x_k}は、Xの点列コンパクト性より収束部分列をもつ。その極限をx_∞とおくと、{V_λ}はXの被覆であるから適当なV_λ∈{V_λ}がx_∞を含む。V_λは開集合であるから、μ>0が存在してU(x_∞;μ)⊂V_λ。十分大きいk'をとれば、1/k'<μ/2とd(x_k'、x_∞;μ)<μ/2とが同時に成り立つが、このときU(x_k';1/k')⊂U(x_∞;μ)⊂V_λとなって点列{x_k}のとりかたに矛盾する。すなわちルベーグ数の存在が示さfれた。さて開被覆{V_λ}が有限部分被覆を持たないとして矛盾を導く。{V_λ}に対するルベーグ数をεとし、これを用いてXの点列{x_n}を以下のように構成する。まず任意のx_1∈Xを選ぶ。このとき、U(x_1;ε)を含むV_(λ1)∈{V_λ}が存在する。もし、X-V_(λ1)が空ならばXがV_(λ1)だけで覆われるからX-V_(λ1)≠φであり、点x_2∈、X-V_(λ1)を選ぶ事ができる。同様にU(x_2;ε)を含むV_(λ2)∈{V_λ}が存在するが、X-(V_(λ1)またはV_(λ2))はやはり空でない。よって、x_3∈X-(V_(λ1)またはV_(λ2))を選ぶ事ができる。この操作を繰りかえして得られた点列{x_n}はn>mに対してx_nはU(x_m;ε)に含まれない、すなわちd(x_n、x_m)≧εを満たすから収束部分列を含みえない。これはXが点列コンパクトであることに反し、矛盾が生じた。 (証明終わり) まず有限交叉性の全く意味がわかりません。 私は、点列コンパクトとコンパクトの定義を以下のように学習しています。 X:集合、P:開集合族 (X、P):位相空間 K⊂Xがコンパクト ⇔{U_λ}⊂Pかつ和集合U_λ⊃K(λ∈Λ)、この時、和集合U_(λ_k)⊃K(k=1→n)となるようなλ_1、…、λ_n∈Λが存在する。 K⊂Xが点列コンパクト ⇔K内の任意の無限点列{x_n}(n=1、2、…)がKの点に収束する部分列を持つ。 なるべく定義に従って、証明していきたいです。 どなたか、詳しく証明を解説してほしいです。 回答よろしくお願いします。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 集合と位相の問題です。コンパクトについてなんですが良かったら回答お願いしますm(__)m

    コンパクトの定義です。 『位相空間Xの任意の開被覆 {K_α}α∈A の中から 有限個の開集合 K_1、・・・・・、K_m をうまく選んで、 X=K_1∪・・・∪K_m となるとき、Xはコンパクトであるという』 (1)このコンパクトの定義で重要な部分を指摘して下さい。 (2)Rはコンパクトではないことを示して下さい。 よろしくおねがいしますm(__)m

  • 閉区間[-1,1]がコンパクトである事の証明は?

    こんにちは。 閉区間[-1,1]がコンパクトである事はどうやって証明すればいいのでしょうか? RはT:={(a,b)∈2^R;a,b∈R}を位相として位相空間をなしますよね。 [-1,1]の開被覆の集合{A∈2^T;[-1,1]⊂∪[B∈A]B}:=C ∀A∈Cを採った時、どのように有限個のB1,B2,…,Bn∈Aを選べば [-1,1]⊂∪[i=1..n]Bi と出来るのでしょうか?

  • 自然数は、減法について閉じているか?

    まず私が理解していることを書きます ・自然数の体系を前提として、集合{4,5,6}があるとき、 この集合は減法について閉じていません -> 例えば6-4=2という反例があるため ・整数の体系を前提として、集合{0,1,2}があるとき、 この集合は減法について閉じていません -> 例えば0-2=-2という反例があるため この上で、私が疑問なのは、 ・自然数の体系を前提として、集合{0,1,2}があるとき、 この集合は減法について、閉じているかどうかです (これが閉じているかどうかと、自然数が閉じているかどうかは同じ問題と考えています) 私は、この集合{0,1,2}は減法について閉じているのではないかと思うのです 根拠としては、 1.議論の前提が自然数の範囲に限定されている限り、閉じていないことの反例を示すことができません 2.集合{0,1,2}の減法に関する「全ての有効な式及び解」は、元の集合{0,1,2}内のどれかになります しかし、一般的には、閉じていないといわれています。 0-2=-2といったような、明らかに自然数の範囲を逸脱することを前提とする必要がある方法ではなく、 自然数の範囲内のみで、閉じていないことを証明することができるのでしょうか? 教えてください

  • 自然数の構成

    あるサイトで自然数の勉強をしてると、つぎのようなことが書かれてました。 自然数とは、ペアノ公理をみたす集合の元である。 集合Nがペアノ公理を満たすとは、つぎを満たすことである。 Nは、0を含み、単射f:N→Nが存在して、 (1)f(N)は0を含まない (2) )Nの任意の部分集合をSとする。 0∈S、f(S)⊂S⇒S=N. と書いてあったのですが、このような集合Nは、存在することを証明できるのでしょうか? 仮に、自然数Nとしてf(n)=n+1とすればペアノ公理を満たすけど、これだと循環論法の気がします。

  • N以下の自然数からできる部分集合

    N以下の自然数(1-N)の集合Sからできるk個要素を含む部分集合Tの個数を数列であらわしたい( k=2のとき Σ(i=1~n) n-i のように) ただ3以降がいまいち思いつきません。 こういう風にあらわすのは無理なのでしょうか?