• 締切済み

確率E[aX+b]=a[X]+bの証明について

基本的な部分ですが、すっきりせず困っています。 確率変数Xに対し、新しい確率変数aX+bを考えたとき、 E[a*X+b]=Σ{(a*x_i+b)*f(x_i)} ------------------(*) =Σ{(a*x_i)*f(x_i)}+Σ{b*f(x_i)} =a*Σ{(x_i)*f(x_i)}+b*Σ{f(x_i)} =a*E[X]+b*1 =a*E[X]+b という証明がよく教科書に載っていると思います。 しかし、確率変数Xが確率分布f(x)に従うとき、 E[X]=Σ{(x_i)*f(x_i)}=x_1*f(x_1)+x_2*f(x_2)+…+x_n*f(x_n) ですから、確率変数がXからaX+bになると、掛け合わせる確率分布もf(aX+b)でなければならず、結局、(*)式は E[a*X+b]=Σ{(a*x_i+b)*f(a*x_i+b)} のようになると思うのですが・・・。 でもそれだとE[aX+b]=a[X]+bにならないですよね・・・。何か勘違いをしているでしょうか?もしわかる方がおられましたら、どうぞご助力下さい。

  • g47040
  • お礼率55% (125/226)

みんなの回答

回答No.2

Y = aX + b とおくと、X = (Y-b)/a なので、Yの従う確率分布は f((Y-b)/a) です。Y の期待値は、 E(Y) = ΣY_i f((Y_i-b)/a) なので、結局これは Σ(aX_i+b)f(X_i) に等しく、Xの分布の元でのaX+bの期待値に等しくなります。 つまり「掛け合わせる確率分布もf(aX+b)でなければならず」というところが間違っており、もしそうなら Y の確率分布は f(Y) ということになって、X=Y でなければなりませんね。

g47040
質問者

お礼

回答ありがとうございます。 示していただいたE(Y) = ΣY_i f((Y_i-b)/a) ですが、これは結局 E(X) = Σ(aX_i+b)f(X_i) -------------------(*) が成り立つことが前提になっていますが、どうして(*)が成り立つのかという点が疑問だったのです。 私の質問内容があいまいだったためだと思われます。 失礼いたしました。

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

f(x_i) は、確率変数 X が値 x_i をとる確率です。 新しい確率変数 aX+b とは、X が値 x_i をとるときに値 a(x_i)+b をとるような確率変数 という意味だったのではないですか? ならば、 aX+b が値 a(x_i)+b をとる確率は、X が値 x_i をとる確率と同じ f(x_i) であるハズです。

g47040
質問者

お礼

確かにその通りだと思います。 そう考えると、「aX+b が値 a(x_i)+b をとる確率は、X が値 x_i をとる確率と同じ f(x_i) であるハズです」 というのは当たり前ですね。 すっきりしました、ありがとうございます。

関連するQ&A

  • 関数f(x)が"f(x)=(1)ax(0≦x≦1)(2)b

    関数f(x)が"f(x)=(1)ax(0≦x≦1)(2)b(x-2)(2≦x≦3)(3)その他0"で与えられており、Xをf(x)を密度関数とする連続型確率変数とする時、期待値が5/3の時の分散は(1)と(2)の分散(aとbは求めてから)を足したものでいいんのでしょうか?

  • b2-(a-x)=b2-a2+2ax-x2

    の中でb2-(a2-2ax+x2)の符号が逆になるというのは教科書のどこに書いてありますか?

  • t=ax+b と x=(t - b)/a について

    t = ax + b ----((1)) (1)を変形して x = (t - b)/a -----((2)) (2)を(1)に代入して t = ax + b = a * (t - b)/a + b = t ------((3)) となるのは当然のような気はしますが 何か不思議な感じもします。 たとえば t = f(x) = (xについての任意の多項式) ------((1)’) (1)’を変形して x = g(t) = ((1)’に対応するtについての多項式) --------((2)’) (2)’を(1)’に代入して t = f(x) = f(g(t)) = t ------((3)’) となることは証明できるのですか?

  • ∫[0→1]|x^2+ax+b|dxの最小値についてヒントください

    a,bを任意の実数とするとき、積分∫[0→1]|x^2+ax+b|dxの値の最小値を次の方法で求めるのですが(4)がわからないのでヒントを教えて下さい (1)Aを実数として|A|+A≧0、(等号はA≦0のとき)           |A|-A≧0、(等号はA≧0のとき)を証明せよ (2)関数f(x)について   I=∫[0→1]f(x)dx, J=∫[0→c]f(x)dx+∫[c→d]f(x)dx+∫[d→1]f(x)dx ただし、0<c<d<1とおく   I≧Jを証明せよ。また等号が成立する条件を求めよ  (3)f(x)=x^2+ax+bとおくときJの値をa,b,c,dで表し、a,bについて整理しJの値がa,bに関係なく一定となるc,dの値を求めよ (4)積分∫[0→1]|x^2+ax+b|dxの最小値と、その時のa,bの値を求めよ。 という問題です(1)はAを正負に分けて証明すればできました。 (2)はI-Jとおいて、積分区間を0→c,c→d,d→1の三つに分けて(1)を利用して証明できました。等号が成立する条件も(1)からわかりました。 (3)は計算してa(c^2-d^2+1/2)+2b(c-d+1/2)+2/3(c^3-d^3+1/2) a,bの係数が0と置いてc=1/4,d=3/4がでました。 (4)が全く分かりません(c,dがx^2+ax+b=0の解ぐらいです (4)のヒントを何か下さい・・・・・よろしくお願いします。

  • 統計学 確率変数変換後の期待値

    確率変数Xが確率密度f(x)]の確率分布にしたがうとき、 新たな確率変数をY=aX+bと定義したとき、 E[Y]=∫[-∞~∞](ax+b)f(x)らしいですが、 なぜ E[Y]=∫[-∞~∞](ax+b)g(y)ではないんですか? 手元の参考書には、 確率変数を変換すると確率密度も変わると書いてあります。 それならば新たな確率変数Yは新たな確率密度g(y)に従って上に書いた式になると思ったんですが・・・

  • f(x)が(x-a)(x-b)で割り切れる⇔...

    f(x)が(x-a)(x-b)で割り切れる⇔f(a)=f(b)=0 という定理がありますよね これの証明を自分でしようと思ったのですがうまくできませんでした 公式集を見ても、教科書を見ても証明が乗っていなかったので教えてください またこの定理にはa≠bという条件がついていたような気がするのですが (記憶があいまいです) a=bの時には成りたたないのでしょうか?

  • 確率変数Xは…

    確率変数Xは自由度nのカイ二乗分布に従うとする。 このとき φ(t) = E(e^X) を計算せよ という問題に取り組んでいます。 E(e^X) = ∫e^x * f(x) dx ( f(x)は標準正規分布の確率密度関数) とすればあとは計算するだけと思ったのですが 次のことで迷いました。 「Xが自由度nのカイ二乗分布に従う」という文章は Σ(1->n) X^2 がカイ二乗分布に従うことを意味してるのか それとも Xがカイ二乗分布に従うのか どっちを意味するのだろうかと。 前者なら E(e^X) = ∫e^x * f(x) dx を計算していけばいいのですが、 後者だと 確率密度関数 にガンマ関数が含まれるようで 私の数学力では対応できません。 テキストや、web上では普通 Xは標準正規分布に従い、Χ^2(カイ二乗)がカイ二乗分布に従うと書いてあります。このことを考慮すると、後者の方が適しているような気もします。 アドバイスをいただけないでしょうか。お願いします。

  • 確率変数、平均、分散の証明問題

    連続的な値をとる確率変数Xの平均をμ、分散をzとする。Y=aX+b、a≠0なる新たな確率変数を考えたとき、その平均と分散がそれぞれaμ+b、a*a*zとなることを証明せよ。 の解答をお願いします。

  • 統計学で、確率変数変換後の期待値の式がわからない

    確率変数Xが確率密度f(x)の確率分布にしたがうとき、 E(X)=∫[-∞~∞]xf(x)dx・・・(あ)と定義され、 新たな確率変数YをY=aX+bと定義したとき、 E[Y]=∫[-∞~∞](ax+b)f(x)dx・・・(い) らしいです。 また、手元の参考書には確率変数を変換すると確率密度も変わると書いてあります。 ではなぜ(い)の式で確率密度が(あ)と同じf(x)のままなんでしょうか???

  • 「f(x)=x^3-3ax+b(a,bは定数、a>

    「f(x)=x^3-3ax+b(a,bは定数、a>0)という 3次関数について f(x)がx=αで極大、x=βで極小となるとき f(α)-f(β)を求めよ。」という問題の解答に、 「f'(x)=0の解がα、βであり、 x^3の係数1は正であるからα<β よって、α=-√a, β=√a」 とあるのですが、 「x^3の係数1は正であるからα<β」と言い切れるのは何故ですか? 理屈というか、そうなる理由がよくわからないので教えて頂きたいです。よろしくお願いします。 ※質問文でわかりづらいところがあれば出来る限り 対処しますので、指摘をお願いします。