• ベストアンサー
  • すぐに回答を!

三角関数の不等式(2)

つぎの問題教えてください。 問い、次の値を求めよ。 (1)sin20°+sin140°+sin260° 解答 =sin140°(2cos120°+1)=0 (2)cos10°+cos110°+cos130° 解答 =cos50°+cos(150°-50°)=0 両問ともなんで途中式から0になるのか知りたいです。 そこだけで結構です。 よろしくお願いします。

noname#6037

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数104
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

こんにちは。 (1)sin140°(2cos120°+1)=0ですが cos120°=-1/2ですから、(2cos120°+1)の部分が0ですから、そうなります。 (2)cosθ=-cos(180°-θ)ですから、 与式はcos50°+cos(180°-50°)=0 ですね。 こんな説明で分かってもらえたでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 回答聞いてみると「あ」と言う感じでわかりました。

関連するQ&A

  • 三角関数の不等式

    以下の質問について教えてください。 0°<=θ<360°のとき、つぎの不等式を解きなさい。 cos2θ>sinθ 解説・解答 1-2sin^2θ>sinθ (sinθ+1)(2sinθ-1)<0  ←ここまではわかるのですが、 sinθ+1>=0から ←悩み始めます。なぜ「>=0」? sinθ+1≠0, 2sinθ-1<0 ゆえにsinθ≠-1, sinθ<1/2 よって0°=<θ<30°, 180°<θ<270° ←sinθ<1/2だと、私の場合、30°<θ<150° 270°<θ<360°               なんですが、ちがってしまいます。 わかりやすく教えてもらえるとありがたいです。 お願いします。

  • 数学2の三角関数です。

    以下の問いについての解法を教えて下さい。 問) π/2<α<π で、cos α=&#65293;3/5 のとき、次の値を求めよ。 (1) sin α/2 読みづらいかもしれませんが、よろしくお願いします。

  • 三角関数について

    このような問題が提出されました。教科書等に例題が記載されてなく解答することができません。ご教授願います。 cosθ/2=tとするとき、次の値をtを用いて表しなさい。 ただしsinθ/2>0,cosθ/2>0とする。 (1)sinθ (2)cosθ cos2θ=tとするとき、次の値をtを用いて表しなさい。 ただしsinθ/2>0,cosθ/2>0とする。 (1)sinθ (2)cosθ の問題です。tanθ=tの場合は解答できたのですが、cosの方がわかりません。よろしくお願いします。

その他の回答 (1)

  • 回答No.1

(1)cos120°=-1/2 だから. (2)=cos50°+cos(150°-50°)=0 これはおかしくて, =cos50°+cos(180°-50°)=0 とかでは? cos(180-θ)=-cosθ の利用だと思います.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 そういうことか~、という感じでした。 またよろしくお願いします。

関連するQ&A

  • 三角関数

    θが次の値のとき、sinθ、cosθ、tanθの値を求めよ。 という問題で、 問: 8/3π 答: π=180°より   8/3・180°=480°   480°は120°+360°×1   θ=120°   よってsinθ=√3/2、cosθ=1/2、tanθ=√3 答えはこれで合っているのですが、 やり方はこれでいいんですか?(>_<) まだ学校で習っていないので、 もっといいやり方があれば教えてください! それと、 問: -3/4π 答: sinθ=-1/√2、cosθ=-1/√2、tanθ=1 問: -7/3π 答: sinθ=-√3/2、cosθ=1/2、tanθ=-√3 cosθとtanθに-がついたりつかなかったりするじゃないですか? それの意味がよくわからなくて・・ 教えてください!

  • 三角関数 問題

    sinθ+cosθ=1/√2のとき次の値を求めよ。 (1)sinθcosθ (2)(sinθーcosθ)2 (3)tanθ+1/tanθ 解答お願いします! 僕的には(1)ー1/4(2)1/4(3)&#65293;1/√2だと思うのですが。

  • 三角関数の質問です。

    0≦θ≦2π のとき次の不等式を満たすθの値を求めよ。 問 sin2θ-cosθ<0 cosθ(2sinθ-1)<0 と分解するのはわかったのですが、よくわかりません。 解答お願いします。

  • 三角関数 問題

    sinθ+cosθ=1/√2のとき、次の式の値を求めよ。 (1)sinθcosθ (2)(sinθーcosθ)の二乗 解答お願いします。 僕は(1)ー1/4(2)ー3/2だと思うのですが、合ってるでしょうか?

  • 三角関数での質問です

    〔問)cos^2θ=1/4を満たすθの値を求めよ。〕 上の問題で、自分で解いた答えは θ=(1/3)π+2nπ、(2/3)π+2nπ、(4/3)π+2nπ、(5/3)π+2nπ の4つだったのですが、解答では θ=±(1/3)π+2nπ、±(2/3)π+2nπ となっていました。 cosθ=±(1/2)だから cosθ=1/2よりθ=±(1/3)π cosθ=1/2よりθ=±(2/3)π となるのはわかるのですが、-(1/3)πと-(2/3)πを、(4/3)と(5/3)に考えて(4/3)π+2nπ、(5/3)π+2nπと自分ではしていたのですが…。 また他の参考書では 〔問)sin^2θ=3/4を満たすθの値を求めよ。〕 上の問題の解答を θ=(1/3)π+2nπ、(2/3)π+2nπ、(4/3)π+2nπ、(5/3)π+2nπ としていて、いったいどちらのとき方が正しいのかわかりません。 それとも単にsinθとcosθでは不等式のとき方が違うのでしょうか? どうか解説のほうをよろしくお願いします。

  • 三角関数について教えて欲しいです;

    0≦θ<2πのとき、次の方程式を解け cos2θ+sinθ=0 という問題です。 sinθの値は出すことができたのですが、 解答にはθの値が書かれています。 sinθの値が答えではだめなのでしょうか? よければ sinθなどが答えになる時、 θが答えになる時の条件なども 教えていただけると嬉しいです; わがまま言ってすみません; あと、既出でしたらすみません;

  • 三角関数を含む不等式

    0≦θ<2πのとき、次の不等式を解け。 sinθ(√2cosθ-1)<0 sinθあるいはcosθだけにしたいのですが どうしたらいいのかわからず困っています;; よろしくお願いします。

  • 三角関数の問題がさっぱり・・・

    (問) θについての方程式    sin3θ=cos2θ  (0≦θ<2π) において、これを満たすθを値が大きい順にθ1,θ2,θ3とする。 このとき、sin(θ1+θ2+θ3)の値を求めよ ・・・という問題なのですが、3倍角・2倍角の公式でsinθ=1,(-1±√5)/4、とまではできたのですが、 sinθ=(-1±√5)/4のときのcosθの正負の判定ができず、二重根号も外せないで行き詰っています。 θ1が最大角であることから、sinθ1=(-1-√5)/4までしか分かりません。 仮にsinθ2=1,sinθ3=(-1+√5)/4とすると、(逆もあり) sin(θ1+θ2+θ3) =sin{θ2+(θ1+θ3)} =(中略) =cosθ1cosθ3-sinθ1sinθ3 で、cosθが求められずにここで終わりました。 cosθ1,cosθ3の値は求めなくても解けるのでしょうか? どなたかこの問題が分かる方、ヒントをください!!

  • 三角関数

    問 次の三角関数を例のように一度0°から90°の 三角関数になおしてから、値を求めよ.  例 sin(-420°)=-sin420° =-sin(60°+360°)=-sin60° =-(√3/2) (1)cos300° (2)tan(-120°) (3)sin600° (4)cos1200° 私の出した答は (1)1/2 (2)-√3 (3)√3/2 (4)ー(1/2) になったんですけど、(3)は第3象限だからマイナスになるはずだから矛盾してますよね・・・? 教えてください。よろしくお願いします.

  • 三角関数の問題です。教えて下さい。

    関数y=2cos3Θについて、次の問いに答えよ。ただし0≦Θ≦2πとする。 (1)この関数の周期を求めよ。 (2)y=2となるΘの値を求めよ。 (3)y=sinΘとy=2cos3Θのグラフより、方程式sinΘ=2cos3Θを満たすΘの個数を求めよ。 の3問です。 いとこに渡された問題なのですが、数学から離れてはや数年…すっかりやり方を忘れてしまいました。 参考書を(もっているものを)広げてみて、試みてはみたものの、分かりませんでした。 もし、分かる方がいらっしゃいましたら、教えて下さい。 お願いします。