• 締切済み

線形代数 基底、線形従属について

Vをベクトル空間とする。n個の線形独立なベクトルx1,x2,…,xn(Vの要素)がVの基底をなすための必要十分条件は、これらに任意のベクトルy(Vの要素)を加えたx1,x2,…,xn,yが線形従属となることである。このことを証明せよ。 どのような流れで証明すれば良いのでしょうか? よろしくおねがいします。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

そりゃぁ「必要条件」であることと「十分条件」であることの両方を別々に証明するんだけど.... ところで, 「基底」の定義は OK?

関連するQ&A

  • 線形代数の問題

    大学の線形代数の問題です。 これがよく分かりません。 方針だけでも教えていただけませんか>< 問.Vをベクトル空間とする。n個の線形独立なベクトルx1,x2,…,xn(Vの要素)がVの基底をなすための必要十分条件は、これらに任意のベクトルy(Vの要素)を加えたx1,x2,…,xn,yが線形従属となることである。このことを証明せよ。

  • 線形代数の問題です。

    線形代数の問題です。 問1.ベクトル空間Vにおいて、次の命題を考える。 Vのベクトル「 (1)X1,X2,X3,…,Xkは一次独立 」とする。 さらに、もう1つのVのベクトルyを付け加えたとき 「(2) X1,X2,X3,…,Xk,yは一次従属 」とする。 このときyは「(3) X1,X2,X3,…,Xkの一次結合 」で一意的に書き表される。 (i)「(1)」「(2)」「(3)」の定義を述べよ。 (ii)上の命題を証明せよ。 問2.次の言葉の定義を簡潔にかつ正確に述べよ。 ただし一次独立、一次結合という言葉は使ってもよい。 (i)線形空間の基底 (ii)線形空間の次元 (iii)線形写像の階数 分かる方お願いします。

  • 基底について

    大学の問題で、どうしてもわかりません。 「Vをベクトル空間とする。n個の線型独立なベクトルがVの基底をなすための必要十分条件は、これらのベクトルに任意のベクトルを付け加えたものが線型従属になること」 を証明するための筋道がわかりません。 これは基底の定義では?と思うのですが、わかりません。 検討がつきません。 ヒントがあればお教えいただけると助かります。

  • 生成系と線型独立

    Vはベクトル空間である。 Vの元 x1,x2,…xn はVの生成系である。 これらn個のベクトルからx1,x2,…xnから任意の1個を取り除いた残りの n-1個のベクトルはVの生成系をなさないとする。 このとき、x1,x2…xnは線型独立であることを証明せよ。 かなりの初心者です(>_<)どーぞよろしくお願いします。

  • ベクトル空間の生成系と線形独立

    ベクトル空間の生成系と線形独立の問題がわかりません。 Vをベクトル空間とし、x1,x2,…,xn∈VはVの生成系であるとする。これらn個のベクトルx1,x2,…,xnから任意の1個を取り除いた残りのn-1個のベクトルはVの生成系をなさないとする。このとき、x1,x2,…,xnは線形独立であることを示せ。 よろしくお願いします。

  • 次元に関する証明

    Vをベクトル空間とする。 (1)Vにはn個の線型独立なベクトル x1,x2,…,xn が存在する。 (2)Vの n+1 個のベクトル y1,y2,…,yn+1 は線型従属である。 このとき、dimV = n であることを証明したい。 (2)から線型関係の式を作り、yは線型従属であることと、n項までのスカラー(a1,a2,…,an)は線型独立であることより an+1≠0 。 次に、上で作った式から yn+1 = (略)にして、 y1,y2,…,yn がVを生成し、線型独立であることを確認して、dimV=n という風(分かりにくい説明ですみません)に証明しようと思うのですが、この考え方でいいのでしょうか。 また、ベクトルx,yをうまく用いた、(きれいな)証明を教えてください。

  • 線形代数学、基底と次元について

    線形代数学の勉強をしている者です。 (1,0,-1,0)と(0,-1,1,0)から生成されるベクトル空間。 これが3次元ではないことを証明する。 私にはかなりの難問です。3次元であると仮定したら矛盾が導けるのでしょうが、どうやればいいのかさっぱりです・・。 基底と次元に関する定義、 ある線形空間Vがn個のベクトルから構成される基底を持つとき、Vの次元はnであるという。 これの逆を証明するということ・・・なのかな? 知っている方、いますか?ヒントだけでも教えてください。

  • 線型代数(基底の求め方について)

     標準ユークリッド内積が与えられた実線型空間R4について、v1、v2、v3、v4で張られる部分空間をWとします。また、 v1=t(1 1 -2 0)、v2=t(1 -1 0 -2)、v3=t(-2 1 1 3) v4=t(-1 2 -1 3) としたとき、Wとその直交補空間(W’)の基底についてそれぞれ求めたいのですが、まずWの場合はv3とv4が一時独立であり、v3、v4を用いてv1、v2を表すことができるので、Wの基底はv3、v4だと思うのですがこれで大丈夫のでしょうか?  また、Wの直交補空間の基底を求める場合は、まずv1~v4とW’の任意の元xとの内積を考えていけばよいのでしょうか? 以上の2点なのですが、どなたか考え方を教えていただけないでしょうか?大変読みにくい文章かと思いますが、よろしくお願いします。

  • 基底の条件についての証明

    ベクトル空間Vにおけるベクトルの組{ak}(k=1,2,…,n)について (i){ak}の線形結合によってVの任意のベクトルを表すことができる。 (ii)n個の{ak}は線形独立である。 (ii)'{ak}の線形結合はVのベクトルを一意的に表す。 という基底の条件において (ii)⇔(ii)'を証明するには どのようにしたらよいのでしょうか?? 単純な証明ではないらしいのですが 単純な解答しか思い浮かばないです… よろしくお願いしますm(_ _)m

  • 基底であることを示す問題

    こんにちは。 K^3において、ベクトルの組(1,2,0)、(1,0,1)、(1,2、-1)が基底であることを示したいのですが、どのように示せばよいかわかりません。 基底の定義: ベクトル空間Vのベクトルの組x1、x2、・・、xrがVの基底であるとは、次の2条件を満たすことである。 (BS1)V=<x1、x2、・・、xr>である。 (BS2)x1、x2、・・、xrは線形独立である。 定義にそのままあてはめればよいだけだとは思うのですが、実際何をすればよいのかがわかりません。 回答よろしくお願いします。