• 締切済み

統計学: 不偏標本分散の分母は、なぜ(n-1)なの?

好奇心から統計の入門書を読んでの疑問です。 標本分散(sample variance)=偏差平方和(SS)/標本サイズ(n) は理解できたのですが、 この分母を (n-1) にして、 不偏標本分散(unbiased sample variance)=SS/(n-1) というものをわざわざ考えるのはなぜですか? 標本分散だけで充分役に立つと思うのですが…。 分母を n でなく (n-1) とする意義は何でしょうか? 「突出した標本を未然に除外する」ということなんでしょうか? オリンピック体操種目の採点の際、不公正を排すために最高点・最低点を除外して計算するというのを聞いたことがありますが、それと同じ目的でしょうか? だとすれば、なぜ (n-2)や(n-3)ではなく、あえて (n-1) なのでしょうか? よろしくお願いいたします。

みんなの回答

回答No.1

この原因は実際の標本サンプルデータが正規分布とは異なり、平均値mがX(bar)と異なることにあります。 基本的に推定量とは確率変数ですから標本により変動するわけです。 実際(X(i)-X(bar))^2を計算してみると分りますが、(X(i)-m)^2とは異なり、σ^2にはなりません。 具体的には((X(i)-m)-(X(bar)-m))^2を計算すれば分ります。 とりあえず自分で確かめることをお勧めします。 分らなければ再度ご質問ください。

camearian
質問者

お礼

ありがとうございました。 別の本を読んで、やっと理解できました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 不偏分散の分母の n-1

    標本平均 Xav を求める式、  Xav = 1/nΣxi を不偏分散で用いるため自由度が1減り、不偏分散の分母が n-1 になると思います。 母平均は標本から求めるものではなく(それは標本平均になる)、既知であることが前提であるため上式は不要であり、 標本分散では自由度が減らず分母が n-1 ではなく n になる。 この考えは間違っていないでしょうか? もし間違っていないとすると、母平均は事前にわかっているものなのでしょうか? 例えば、母集団をクラス40人のテストの点数とすると(これは母集団と言わない?)、上式より母平均(?)を求めることができます。 母平均が40個のデータに独立でないため、分散の自由度は1減らす必要がある気がします。 これは結局不偏分散を求めているのでしょうか?

  • 標本分散が母分散より少し小さくなる理由、不偏分散をn-1でわる理由

    お世話になっております。 統計学初心者で、母平均の信頼区間の推定について勉強しています。 勉強している中で、標本分散が母分散より少し小さくなるということ、 そのため標本分散ではなく不偏分散を利用し、不偏分散の算出は偏差平方和、サンプルサイズから1引いたもので割ることを勉強しました。 しかし標本分散が母分散より少し小さくなる理由、そして、そのために不偏分散の算出においてn-1でわる理由が分かりませんでした。 わかりやすい形で教えて頂けないでしょうか? どうぞよろしくお願い申し上げます。

  • 標本分散と不偏分散

    平方和で、個々の測定値と平均値の差の2乗(偏差の絶対値の2乗?)の総和を出せますね。その総和から、測定値と平均値の差の2乗の平均を出したものが標本分散。 単なる平均よりは余裕を持って出した平均(平均値の一部をn-1等分で振り分け?)が不偏分散ですか? また、不偏分散と標本分散は実際、どちらも使われるのでしょうか。 宜しくお願いします。

  • 統計学の不偏分散のN-1について

    統計学の授業で、 (不偏)分散=(Σ(中央値との差)^2)/N-1 と習いました。そして、教授が、なぜ、N-1で割るかについて、 「たとえば1と-1が半々の確率で出る時を考えると、 A 1→1 25% B 1→-1 25% C -1→1 25% D -1→-1 25% の場合があり、それぞれの分散が(Nで割る分散で計算すると) A:0 B:1 C:1 D:0 となるから、平均の分散は0.5になる。しかし、真の値(中央値からの平均距離の二乗)は1のはずだから、分母のNを小さくせねばならない。」 という説明をされました。 しかし、この説明では、たまたま、この一つの具体的な現象において、N-1で割るほうがよりよいと言っているだけであって、他の場合すべてにおいてもより良いことの証明になっていないと思いました。 分散の計算のときにN-1で割ったほうがよいというのは経験則なのでしょうか?それともちゃんと"証明"されていることなのでしょうか? もし"証明"されているならその証明を教えてください。

  • 不偏分散の分布は?

    不偏分散の分布について混乱していますので、ご助言頂けましたら幸甚です。 例えば母集団の分布を正規分布N(μ,σ^2)とした際、 標本平均x(=1/nΣxi)を区間推定する場合、正規分布の再帰性より、標本平均の分布はN(μ,(σ/√n)^2)となることから、μの区間推定が可能と理解しています。 また、若干やり様は異なりますが、標本分散s^2=1/nΣ(x-xi)^2に対し、ns^2/σ^2がΧ2分布に従うことから、σの導出が可能と理解しています。 ここで、上記と同様に、不偏分散(=1/n-1Σ(x-xi)^2)についての分布とは、どのような分布になるのでしょうか? おそらくΧ2分布になると推察しますが、証明できてません。 また、不偏分散の導出方法は、 E[S^2]、即ちS^2の平均と理解していますが、 S^2を確率変数とした際の分布がΧ2分布なのであれば、 このΧ2分布の平均が、不偏分散になってもよさそうですが、 Χ2分布の平均=n ですので、不偏分散とは不一致です。 上記のとおり、整理がついておりませんので、教えて頂けましたら助かります。 特に上記のとおり混乱しておりますので、現在はむしろ、「不偏分散については、点推定でのみ用いるのか?」と考えております。

  • 標本分散について

    標本分散の分母がnなのかn-1なのかで、よく混乱します。 標本分散を計算する場合は、n-1でわり、 全標本分散を計算する場合は、nでわると理解しているのですが、 こんな問題が出ました。 問、次のデータに関して変動係数を求めよ -3,-4,3,5,-1,7,-2 この問題では、標本分散を計算するときに、 回答では、n-1でわる(分散を計算する際の分母は標本分散だから)と 書いてあります。 しかし、 問、次のデータに関してXとYの標本相関係数を求めよ。 ただし、標本に対する操作にとって必要な自由度調整を行うこと [x,y]=[1,3][0,-1][-2,-3][2,1] この問題の回答では、標本分散を計算する際に、nで割っていました。 変動係数を計算する場合は、n-1でわり、 標本相関係数を計算する場合は、nでわる こう考えてOKなのでしょうか?回答が間違っているのか、 私が勘違いしているのかどうかもわからない状態です。 ご教授お願いします。

  • n+1で割る分散ってあるんですか?

    こんにちは。 平方和をnで割ったものを通常の分散,n-1で割ったものを不偏分散といいますよね。 で,何年か前に,統計の先生がn+1で割る分散もあるという話をされていたように思うのです(思い違いかもしれませんが)。 n+1で割る分散ってあるとしたら何ですか?統計学的にどういう特徴をもつものなんでしょうか? よろしくお願いします。

  • 統計学について

    「t分布の自由度が高いと標準正規分布とほぼ同じとみなせる」のは、例えば t(自由度N-1)=標準正規分布に従う変数/【(N-1)S^2/σ^2×1/(N-1)】の平方根 (S^2は不偏分散、σ^2は母分散) という式で考えた場合、自由度が高いとSとσがほぼ同じで、上記の式の分母がほぼ1になり、分子のみ残るから、という理解でよいでしょうか? また、「サンプルサイズが大きくなると標本標準偏差が母標準偏差に近づく」と本に書いてありますが、この場合の標本標準偏差は偏差平方和をNで割って求めたものと、N-1で割って求めたものの、どちらの分散から計算されたと理解したらよいでしょうか? 宜しくお願い致します。

  • 不偏分散の (n-1)で割る理由、、、

    分散の計算では、nで割る母分散と、(n-1)で割る不偏分散がありますが なぜ(n-1)で割るのか、いまいち直感に訴える説明に出会っていません。 たいていの本では、天下り式に「(n-1)で割る」とだけしか書いて いません。たまに親切な本では計算式に平均値が入っているので自由度は nから1だけ少なくなる云々とありますが、自由度が何故1減らなければ ならないのか、いまいち理解出来ません。 もう少し高度な本になると、期待値Eやら分散Vやらが出て来て、 不偏統計量云々の「ややこしい」説明が出て来ますが、これも直感に 訴えかける説明ではありません。 数物系出身ながらお恥ずかしい質問ですが、いざ自分に問いかけてみると 納得できる説明が出来ません。「なるほど!」というご説明をいただけると 幸いです。よろしくお願いします。

  • 確率・統計での分散について

    確率統計における分散について、用語として(文字通り)分散、標本分散、母分散、不偏分散などがあります。 初等的な意味合い(すなわち計算の仕方による定義)としては特段理解が難しいものではないと思いますが、テキストによって定義に若干齟齬があるように思えます。また、エクセルでの計算の実施という意味合いでもやや疑問があるのであらためてお尋ねします。 状況を設定します。 コーヒー豆が1万個ぐらい1つの袋に入っているとします。全部を調べるのが大変なので10個だけ無作為に取り出して調べるということにします(n=10)。 それを何回やるか、また取り出して豆は元に戻すか、ということもありますが、(10個の豆のセットを)1回だけ取り出すということで、元に戻さないということを前提とします(1回だけやるなら同じですね)。 分散:平均からの偏差の2乗和の平均(状況に無関係な一般用語?) 標本分散:1つの標本(10個)に関して分散を取ったもの。10個の豆の平均からの偏差の2乗和をn(=10)で除したもの。 母分散:袋に入っている1万個の豆を全数調査して調べた分散 不偏分散:10個の標本から母分散を推定しようとして標本(10個の豆)の平均からの偏差の2乗和を9(=n-1)で除したの。 このような定義で間違いないでしょうか。確率・統計の本ってものすごくいっぱいありますから本ごとにちょっと違うことが書いてあるように思ったのでお尋ねしました。標本分散のことを不偏分散と書いてある本があったりしたのですが。 その次にエクセルの関数、varp, var についてお尋ねします。 varpは母分散を求め、varは不偏分散を求めると仕様に説明されています。そのエクセルの計算に用いるデータは取り出した1つの標本(10個の豆)しかありません。 後者(var)はいいのですが、前者(varp)は母分散を求めるという仕様で、10個の豆だけで、1万個全数調査してやっとわかる母分散が分かるはずはないと思うのですが。母分散がサンプルから求まるはずはなく、サンプルから母分散を求める努力の結果が不偏分散ということですね。たとえば、母集団(豆袋)から取り出した10個のサンプルをあらためて母集団とみなしてただ単にその分散ということなのでしょうか。そのような入れ子のような解釈をすると混乱するのでそうではないはずなのですが。 長文ですみません、よろしくお願いします。

このQ&Aのポイント
  • 突然印刷ができなくなった!Wi-Fiには繋がっているのにエラー表示はなし。
  • お使いの環境はiOS16.6で、無線LAN経由で接続しています。関連するソフト・アプリはありません。
  • 問題はひかり回線のせいかもしれません。解決策を探りながらトラブルを解消しましょう。
回答を見る