• ベストアンサー
  • すぐに回答を!

標本平均の二乗の分散とは

成功確率pのベルヌーイ分布に従う確率変数X1,X2,,,,Xnはそれぞれ独立であるときこの標本平均Y=(X1+X2+,,,,+Xn)/nを標本平均といいますが、このときY^2の分散を求めたいのですがいいアイデアはありますか??ありましたら教えてください。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

P(X=1)=p,P(X=0)=1-pなので、 E[X]=p,E[X^2]=p,V[X]=p(1-p)は単純計算でチェックできると思います。 これから、E[Y]=pはすぐにチェックでき、 あとは、E[(Y-E[Y])^2]を計算するだけですが、 E[(Y-E[Y])^2] =E[(Y-p)^2] =E[Y^2 - 2Yp +p^2] =E[Y^2]-p^2 なので、Y^2の平均が計算できれば解けます。 Y^2をXの式で書き直して、 X^2の部分と、X_iX_jの部分に分けて計算します。 X^2の部分は一番初めに計算したからそれを使い、 X_iX_jは独立であることから、 E[X_iX_j]=E[X_i]E[X_j]=p^2と変形できます。 以上の計算をまとめれば答えになります。 細かな計算やチェックは勉強のため自分でがんばってください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高校数学の標本平均について 教えてください。

    母集団から大きさnの無作為標本を抽出しそれらの変量xの値をX1.X2.….XnとするときXバー=(X1+X2+…Xn)/nを標本平均という。標本平均Xバーの確率分布と母集団分布関係を調べよう。母平均m,母標準偏差σの母集団から大きさnの無作為標本を抽出しそれらの変量xの値をX1.X2.….Xnとする。各Xkはどれも大きさ1の標本で母集団分布に従う確率変数である。よってE(X1)=E(X2)=E(Xn)=m σ(X1)=σ(X2)=σ(Xn)=σであるしたがって E(Xバー)=mになる。 また復元抽出の場合はX1.X2.….Xnは互いに独立な確率変数であるから分散V(Xバー)={V(X1)+V(X2)+…+V(Xn)}/n^2というところがわかりません。 なぜn^2で割ることになるのですか? どなたか教えてください。お願いします。

  • 大学の統計学です 確率母関数、ベルヌーイ分布、モーメント母関数

    明日試験なのですが、勉強不足で全然わかりません・・・・ ・2項分布B(n,p)の確率母関数を計算せよ ・幾何分布Ge(p)の確率母関数を計算せよ ・X1,X2....Xnを互いに独立でベルヌーイ分布に従うn個の確率変数とするとき、Sn=X1+X2+...+Xnの分布が2項分布となることを示せ またSn/nの平均値と分散を求めよ ・指数分布Exp(θ)のモーメント母関数、平均値(期待値)、分散を計算せよ ・2回のサイコロ投げにおいて、Xを最初の目、Yを2回目の目とするとき、Z=X+Y,W=X-Yとおく (1)ZとWの平均値を求めよ(2)ZとWの分散をもとめよ(c)ZとWの共分散を 求めよ ・X1,X2....Xnを互いに独立で同一の分布に従う確率変数とする。 E(Xi)=μ、V(Xi)=σ^2、i=1,....,nとしX1,X2....Xnの標本平均をZ=1/n(X1,X2....Xn)とおく。 E(Z)とV(Z)を計算せよ わかる方教えていただけたら嬉しいです!!!! よろしくお願いします。

  • 正規母集団の標本平均と標本分散の独立性

    X_1,…,X_nを正規母集団から取った大きさnの標本とします。 簡単のため、母集団の平均は0、分散は1と仮定します。 このとき標本平均X=(X_1+…+X_n)/nと 標本(不偏)分散s=((X_1-X)^2+…+(X_n-X)^2)/(n-1) を考えます。 Xは平均0、分散1/nの正規分布に、 (n-1)sは自由度n-1のχ^2分布に従うと思いますが、 このXとsの独立性の証明はどうやったらよいのでしょうか? 結合分布の計算にX_i^2が混じるので大変に面倒です。 非芯χ^2分布の特性関数の計算などを使うのでしょうか。 方針は立つものの、あまりに煩雑な計算になりそうで尻込みしています。 簡便な計算法をご存知であれば教えていただきたく思います。 よろしくお願いします。

  • 標本平均値の分散

    平均μ、分散σ^2の母集団からとられた標本数nの標本平均値x ̄(エックス・バー)の平均値はμということは、理論的にも感覚的にもだいたいわかりますが、標本平均値の分散がσ^2/n(母集団の分散を標本数nで割った値)になるのかは、nが多いと母集団の平均値に近い標本がとれる確率が高くなるからなど、感覚的にはある程度(ほんとうにある程度…)わかりますが、理論的にはほとんどわかりません。どなたかなぜ標本平均値の分散がσ^2/nになるのか、特に理論的にお教えいただけないでしょうか? 本などを見ても、このことを理論的にわかりやすく説明した本は少なく、実際に実験してみたらそうなるからとか、あいまいな説明しかありません。 ちなみに数学はあまり得意じゃありません。

  • 正規母集団でないときの標本平均と標本分散の独立性

    こんにちは。 正規母集団であるとき、標本平均と標本分散の分布が独立であることは、直交変換によって証明することができますが、 非正規母集団であるときは、標本平均と標本分散の独立性は必ずしも成り立たないということでよろしいでしょうか。 また、正規分布以外の分布で、標本平均と標本分散が独立であるような母集団分布をご存知であれば教えて頂きたいのですが。 よろしくお願い致します。

  • 確率分布について

    確率変数X1,X2,X3......Xnは独立同分布で一様分布U(0,1)に従い、X=min(X1,X2,,,Xn)、つまり標本最小値であるとき Y=max(X1,X2,,,,Xn)、つまり標本最大値はどのような分布に従うのでしょうか?どのような考え方をしたらよいのか教えてください。 よろしくお願いします。

  • 統計学 確率分布の問題

    こんにちは。統計学を勉強している者ですが、 次の問題が解けずに困っています。  n個の確率変数 X1, X2, … Xnが、  次の母集団分布からのランダム標本であるとする。  P(X=1)=p , P(X=0)=1-p=q  このとき、Y=X1+X2+…+Xnの確率分布を求めよ。  また、Yの平均と分散を求めよ。 という問題です。 Yの確率分布は、P(X=1)が選ばれる回数をkとすると nCk * p^k * q^(n-k) になると思うのですが…。 確率分布と言われると、どう答えてよいのかわかりません。 平均と分散は、この確率分布の答えをもとにして 出せばいいのですか? kやnをどう駆使して算出すればよいのでしょう? 答えの分かる方、詳しく解説してもらえると助かります。

  • 【確率・統計】母平均、母分散について

    統計の質問です。 ある母集団からランダムにn個のサンプルX1,X2,...,Xnをとり、 その特性値x1,x2,...,xnを調べた。 ※「サンプルX1,X2,...,Xn」は大文字のX、 「特性値x1,x2,...,xn」は小文字のx。 この特性値について、母平均、母分散の不偏推定量を 求める式をn,X1,X2,...,Xnを用いて表しなさい。 という問題なのですが、 私の理解では、 『サンプルの「X1,X2,...,Xn」は それぞれ(母集団の分布に従った)確率変数であるから、 ばらつきがある。 そしていま、たまたま X1=x1(値), X2=x2(値), ...,Xn=xn(値)であった。』 という解釈をし、 (母平均)=(X1+X2+...+Xn)/n (母分散)={(X1^2)+(X2^2)+...+(Xn^2)-n*{(X1+X2+...+Xn)/n}^2}/(n-1) と答えを出したのですが、この解釈は正しいでしょうか? 自信が持てずにいるので、 ご指摘、アドバイス等ありましたら、 どうかよろしくお願いいたします。

  • 期待値と分散が知りたいです。

    統計学の質問ですがお願いします。 下の中の6番がわかりません 母集団全体における内閣支持率をp(pは未知定数)とする。母集団から無作為に抽出し、支持する場合は「1」、しない場合は「0」と変数Xに記録する。 1、Xは確率変数である。Xの確率分布を求めよ。 2、Xの期待値と分散を求めよ。 無作為抽出をn回独立に復元抽出で繰り返したとする。この無作為標本から得られた回答を上記と同様にX1、X2、…Xnに記録したとする。 3、S=X1+X2+…+Xnとすると、Sはなにを意味するか答えろ。 4、Sの期待値と分散を求めよ 5、X_(←エックスバーです)=S/nと定義する。X_は何を意味しているか答えよ 6、X_の期待値がpと分散p(1-p)/nになる。その証明過程を説明せよ。 わかる範囲でいいのでおねがいします。

  • 期待値と分散を知りたいです。

    統計学の質問ですがお願いします。 下の中の6番がわかりません 母集団全体における内閣支持率をp(pは未知定数)とする。母集団から無作為に抽出し、支持する場合は「1」、しない場合は「0」と変数Xに記録する。 1、Xは確率変数である。Xの確率分布を求めよ。 2、Xの期待値と分散を求めよ。 無作為抽出をn回独立に復元抽出で繰り返したとする。この無作為標本から得られた回答を上記と同様にX1、X2、…Xnに記録したとする。 3、S=X1+X2+…+Xnとすると、Sはなにを意味するか答えろ。 4、Sの期待値と分散を求めよ 5、X_(←エックスバーです)=S/nと定義する。X_は何を意味しているか答えよ 6、X_の期待値がpと分散p(1-p)/nになる。その証明過程を説明せよ。 わかる範囲でいいのでおねがいします。