• ベストアンサー
  • すぐに回答を!

離散フーリエ変換

今、離散フーリエ変換の値が求まっています。 これから、振幅の値を出すのは、どうしたらいいのでしょうか? 自分で調べたところ、離散フーリエ変換の値に標本化関数のフーリエ変換をかけて、サンプリングの間隔で割ればいいのでは、と考えているのですが、標本化関数というものがよくわかりません。このやり方で良いのかもわかりません。 アドバイスお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数307
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • keyguy
  • ベストアンサー率28% (135/469)

元の信号の式っていう事ですよね?: 離散フーリエ変換式と逆変換式を調べて並べて補足してください

共感・感謝の気持ちを伝えよう!

質問者からのお礼

少し考え違えをしていて、振幅というのは、また別問題でした。。ごめんなさい。

その他の回答 (3)

  • 回答No.4

実部と虚部のデータがあってそれを振幅と位相に変換するということではないのですか?

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • keyguy
  • ベストアンサー率28% (135/469)

元のデータを持っていず離散フーリエ変換の結果だけがある場合それを逆離散フーリエ変換の式にかければ もとの離散フーリエ変換前の結果が得られます 勿論もとのデータがあるのならばなにもする必要はありません それを持っていないとして話しているのです 使っている本に逆離散フーリエ変換の式が載っていないならばろくな本ではないのでそれを捨ててサイトで検索してください

共感・感謝の気持ちを伝えよう!

質問者からのお礼

またまたお返事、ありがとうございます。 その、離散フーリエ変換した値っていうのが、 ある信号をウィグナー分布に入れた結果なのですが。 この場合、元の信号の式っていう事ですよね? 質問が続いてすいません。

  • 回答No.1
  • keyguy
  • ベストアンサー率28% (135/469)

離散フーリエ変換の式に対応して 離散逆フーリエ変換(逆離散フーリエ変換と言う人も)の式があります それを使えばいいのです

共感・感謝の気持ちを伝えよう!

質問者からの補足

早速、回答ありがとうございます。 もう少し、詳しく教えていただけますか? 離散フーリエ変換する前の式を使うという事ですか?

関連するQ&A

  • 離散フーリエ変換について

    離散フーリエ変換によって得られた値についての質問です。 多くのサイトでその値は Σ(k=0~N-1) f(k)exp(-2πkni/N) という式から求められるとあります。 離散フーリエ変換は本来、ある周期関数が、どのくらいの振幅でどのくらいの周波数の波からできているかを調べるために行うものだと思います。 しかし上記の公式から得られるスペクトル(sqrt(Re^2+Im^2))では振幅の値は得られません。振幅を得るには刻み幅Δ(関数をサンプリングした際の幅)を乗じて Σ(k=0~N-1) f(k)exp(-2πkni/N)*Δ とすれば得られることが分かりました。 最初の公式から得られるスペクトルはなにを表しているのでしょうか?またなぜ刻み幅Δを乗じることで、振幅が求まるのでしょうか? よろしくお願いします。m(__)m

  • 離散フーリエ変換

    フーリエ変換を計算機で扱う場合について聞きたいです。 ある関数(例えばsin(x))を離散フーリエ変換しようとして、まずxを0.1ずつ増やしながらsin(x)をサンプリングします。これを虚部を0として複素数にします。 この後、複素数のフーリエ変換を行い結果が得られます。 と、ここまでは正しいと思うのですが、 その後が分かりません。 文献などに載っているフーリエ変換後のグラフは、横軸が周波数νで、縦軸がf(ν)です。 このグラフと合うようにするには 横軸・縦軸には何をとればいいのでしょうか? 横軸が周波数って言うのは、この場合は1/0.1のことでしょうか? 教えて頂きたいです。お願いします。

  • 離散フーリエ変換

    連続関数f(x)をフーリエ変換してときの係数をcnとすると、 連続関数からサンプル点での値をとってf(xj)の離散フーリエ変換したときの係数c'nとすると両者は同じものなのでしょうか?サンプル点の数とかによるのかもしれませんが、c'nというのは厳密なものなので同じになる気もします。 よくわからないので教えてください.お願いします。

  • 離散フーリエ変換(DFT)の公式について

    離散フーリエ変換の公式は、参考書等によりますと色々な記述があります。 今回は2例の違いを教えていただきたいのです。 1)F(u)=1/NΣf(x)・・・・ 2)F(u)=Σf(x)・・・・ との式があります(両式とも詳細は省いて記述しました)。この規格化定数(1/N)がある公式1)と、ない公式2)があります。 本来の周波数スペクトル(振幅)を表しているのは1)式であると考えていますが いかがでしょうか? 公式2)を使用して算出した場合には、その値をサンプリング数で除すれば公式1)同じ結果となるのですが、なぜ公式2)が記述してあるのでしょうか?

  • 離散フーリエ変換のスペクトルについて

    関数f(x)=2sin(πx)をx=0~2まで等間隔1000点でサンプリングし、 離散フーリエ変換 Σ(k=0~N-1) f(k)exp(-2πkni/N) の式から、言語プログラムで計算する式をつくり、1000個の実数Reと虚数Imを得ました。 ピークはもちろん周波数πのときで、スペクトルの値が1000でした。 √(Re^2+Im^2)をスペクトル値、√なしをパワースペクトル値をいうそうですが、元の関数の振幅2とこのスペクトル値とはどのような関係があるのでしょうか? 異なる正弦波を混ぜれば、スペクトル値を見ることによって振幅の比は分かりますが、スペクトル値と振幅には式的になんらかの関係は存在するのでしょうか?  波のエネルギーは振幅の2乗になると思い、2^2=4がスペクトル値としてでる事を期待していましたが途方もなく異なる値が出てしまいました。 どうぞよろしくお願いします。

  • ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値に

    ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値について教えて下さい。 今想定している離散フーリエ変換の式は一般的なもので Σ(k=0~N-1) f(k)exp(-2πkni/N) を考えています。 また、離散フーリエ変換して得られるスペクトルは √(Re^2+Im^2) で計算します。 離散フーリエ変換を適用する関数を、 振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。 (この2つの信号は別々の信号で合成されていません。) サンプリング周波数を20[Hz]とした場合、サンプリングして得られるデータ列はそれぞれ、 直流: 「1, 1, 1, 1」 正弦波: 「0, 1, 0, -1」 となると想定されます。 (正弦波をサンプリングする場合は位相が関わってきますが、今回は気にしないで下さい。) このデータ列に対して上記の離散フーリエ変換を適用した場合、 得られるフーリエスペクトルの振幅値はそれぞれ、 直流: 「4」(直流のフーリエスペクトルの振幅値値) 正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値) となります。 (データ点数は上の通り4点) ここで質問なのですが、 離散フーリエ変換して得られるスペクトルの振幅値から元の関数の振幅値を求める場合、 フーリエスペクトルをサンプリングの総データ点数で割ることは数学的に納得できます。 しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、 直流: 「4 -> 1」 正弦波: 「2 -> 0.5」 となってしまい、直流は正しいのですが、正弦波の元の振幅値を正確に求めることは出来ません。 この例の場合、フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、 「フーリエスペクトルの振幅値*2/データ点数」 としてやらなければいけません。 上記のことに関して、なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。 当方、数学についてはあまり詳しくないため、簡単に説明して頂けると幸いです。

  • 画像の離散フーリエ変換

    現在画像の離散フーリエ変換をしており、 「c言語で学ぶ実践画像処理」という本には、 水平方向に1次元の離散フーリエ変換をした後、垂直方向に1次元の離散フーリエ変換をすれば良いと書いてあるのですが、 疑問があります。 最初に実部用の配列と虚部用の配列を用意します。 原画像を水平方向に離散フーリエ変換します。 そうすると、初めに用意した実部、虚部用の配列に値が入ります。 ここからさらに垂直方向の離散フーリエ変換をすると、 実部の垂直方向の離散フーリエ変換から実部と虚部が出て、 虚部の垂直方向の離散フーリエ変換から実部と虚部が出て、最終的には実部用の配列が2個、虚部用の配列が2個必要で、 ここからどうやって離散逆フーリエ変換や、振幅スペクトルを求められるのだろうかと混乱しております。 水平方向に1次元の離散フーリエ変換をした後、垂直方向に1次元の離散フーリエ変換はどのようにすれば良いのでしょうか? よろしくお願いいたします。

  • 離散フーリエ変換について

    G(n/Nτ)= Σ[k=0->N-1] {τ*f(kτ)*e^(-i2πkn/N)} 上記の式は離散フーリエ変換の式らしいですが、 これを関数化しようとしてつまずいています。 どのように解釈すれば、関数化できるのでしょうか? 特に、複素数iがよくわかりません。 e^iが点を左に90度回転させるくらいはわかります。 e^(-i2πkn/N)を関数powで表現できなくて困っていますが、多分見当違いだとは思います。 フーリエ級数展開はわかります。 最終的にはFFTを行いたいのですが、 その理解の前に離散フーリエ変換ができないといけないと思っています。 よろしくお願いします。 void GraphClass::ScatteredFourierConvert() { /* N-1 G(n/Nτ)= Σ {τ*f(kτ)*e^(-i2πkn/N)} k=0 k=何番目の値か? τ=値を読んだ間隔 N=値を読んだ数 */ int Tau=10; int N=RangeSize.cx*2/Tau; double Sum=0; double e=2.7182818; for(int k=0;k<N-1;k++) { Sum+=Tau*Data[k*Tau]*pow(e,-i*2*PI*k*n/N); } }

  • 離散フーリエ変換の対称定理について

    離散フーリエ変換において、 Re[X(k)]=Re[X(N-k)] Im[X(k)]=-Im[X(N-k)] |X(k)|=|X(N-k)| といった対称定理が成り立ちます。 数学的にこれらが成り立つということは、大体理解できたのですが、直感的な意味が分かりません。 僕の理解が正しいとしたら、N=128だとしたら、 N=1の極めて周期の大きな波と、N=127の極めて周期の短い波の、 振幅スペクトル(≒振幅?)が等しいということになると思うのですが、どうしても納得が行きません。 N>64の周波数をフィルターでカットした場合も、対称定理は成り立ち、N>64の周波数の波は出てくる(というか、カットしないと、エイリアシングが生じる)と思うのですが、どういうことなのでしょうか? N>64の周波数の波は、計算上は出てくるが、実際にはそのような波は存在しないのですか? あるいは、N>64の周波数同士の波で、上手く相殺されて、逆離散フーリエ変換をしたときには、影響が出ないということなのですか? また、通常のフーリエ変換では、対称定理は成り立たないと思うのですが、そのことも併せて教えて頂けたらと思います。 よろしくお願いします。

  • 離散フーリエ変換をC言語でどの様に書けばいいですか?

    C言語でDFT離散フーリエ変換を書くにはどの様に書けばよろしいですか? Googleで検索すれば書き方は出てくるのですが、使ってる関数がいまいちよく分かりません。 ・データの入力 ↓ ・フーリエ変換の計算 ↓ ・結果の出力というのをやればいいのは理解できるのですが、C言語でどの様に書けばいいか分からなくて…