• 締切済み
  • すぐに回答を!

次の電気回路の問題の解答解説をお願いします。

内径がa,外径がbで中心が一致している導体円筒の間に誘電率εの誘電体が詰まっている。 内円筒に単位長さあたりλの電荷を与えたとして以下の問いに答えよ (a)誘電体内の電場の大きさは (b)内径と外径での電位差は? (c)単位長さあたりの静電容量は?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数415
  • ありがとう数1

みんなの回答

  • 回答No.1
  • foobar
  • ベストアンサー率44% (1423/3185)

ガウスの法則を使い、 (a) 半径rでの電場E(r)=λ/(2πrε) (b) 電位差V=∫-Erdr|r=b→a=λ/(2πε)log(b/a) (c) 静電容量C=λ/V=2πε./log(b/a) になるかと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧に回答ありがとうございました。

関連するQ&A

  • 次の電磁気の問題の解答解説をお願いします。

    1辺が1.5mの正方形の2枚の金属板が6.5mm隔てて平行に向かい合わせて真空中に置かれている。 (a)静電容量Cは? (b)金属板間に2.0kVの電圧をかけると蓄えられる電荷Qは? (c)金属板間に誘電体を入れたところ,極板間の電位差は0.40kVになった。この誘電体の比誘電率εは? (d)誘電体の表面に誘導される電荷,極板間の電場Eの大きさは?

  • 電磁気の問題(円筒形のコンデンサ)

    図のような断面をもつ内径a外形b長さLの円筒形コンデンサがある。 いま電極の単位長さあたりλの電荷を与えたものとし、次の問いに答えなさい (1)電極間(a<b<c)の電場の大きさEを求めよ (2)電極間の電位差Vを求めよ (3)このコンデンサーの静電容量を求めよ E=λ/2πεr V=λ/2πε*log(b/a) となったのですが静電容量がわかりません どなたか教えてください!

  • 同軸円筒のインダクタンス、内外導体間抵抗

    比誘電率80の誘電体を用いた、内導体外径=0.5m、 外導体内径=1mの同軸円筒の単位長さ当たりのインダクタンスと、内外導体間抵抗をもとめたいのですが、透磁率が与えられてなく、導電率が100μS/mです。 どのように求めたらよいのですか? 教えてください…

  • 同軸円筒コンデンサについて

    今、学校でコンデンサについて学んでいるんですが、同軸円筒コンデンサについてよく分からないので、質問させていただきます。 内半径a、外半径b、長さl(>>a,b)の同軸円筒コンデンサがあり、両電極間は中心軸を含む平面で2等分されていて、それぞれ誘電率ε1、ε2の誘電体で満たされています。外側電極は接地、内側導体に電荷Qを与えるとき、このコンデンサの静電容量を求めるにはどうしたら良いんでしょうか??

  • 電磁気系の問題が分かりません

    半径a[m]の内部円柱導体に1m当り+Q[c]の電荷を、これを囲んだ内側の半径がb[m]の外部円筒導体に1m当り-Q[c]の電荷を与える。(2つの導体間の誘電体の誘電率はε) 1中心軸からr[m]離れた点Rでの電界の強さE(r)を導け(但しa<r<b) 2内部導体と外部導体間の電位差Vを導け 3.1m当りの静電容量を導け 1に関してはガウスの定理を用いる閉曲面と電気力線が垂直な面がどこかも明記して欲しいです。さっぱりなので詳しく教えてください。

  • 電気系の問題です

    平行平板コンデンサーを考える。コンデンサー内にできる電界は一様とする。以下の手順でコン デンサーの静電容量を求める。極板間距離をd [ m ]、極板面積S [ m2 ]とし、極板には、それぞれ電 荷密度 ±s [ C / m2 ] の電荷を与えた。以下の問いに答えよ。 (a) コンデンサー内は真空とする。真空誘電率をe0とする。 (a-1) コンデンサー内にできる電界をガウスの定理を用いて求め、ベクトル表記せよ。 (a-2) 極板間の電位差を求めよ。 (a-3) コンデンサーの静電容量を求めよ。 (b) 極板間を誘電率 e の誘電体で満たした。(a-1)~(a-3)の手順でコンデンサーの静電容量を求めよ。 (c) 極板間の上半分を誘電率e1の誘電体、下半分を誘電率e2の誘電体で満たした。(a-1)~(a-3)の手順 でコンデンサーの静電容量を求めよ。 (d) 極板間の左半分を誘電率e1の誘電体、右半分を誘電率e2の誘電体で満たした。(a-1)~(a-3)の手順 でコンデンサーの静電容量を求めよ。ただし、誘電体を挿入したとき、極板内の総電荷量は変化 せず、左半分の領域では、電荷密度は±s1 [ C / m2 ]、右半分の領域では、電荷密度は±s2 [ C / m2 ] になったとする。また、このとき、s1とs2の比を理由とともに示せ。 ★解答がなくて困っている状態です><  解答のほかに途中式と簡単な解説を加えていただけると幸いです。

  • 導体の誘電率

     導体の内部静電場が0になる事は、ふつう最小エネルギー定理からかな?、と思うのですが、この解法は電荷移動の過渡過程を考えていません。それで自由電子モデルを使って、少しだけ過渡過程を考えてみました。  孤立した導体に外部電場がかかるとOhmの法則から、自由電子が移動を始めますが、誘電体のイメージと重ねると、誘電体では原子や分子から出て来ない電子が自由電子として飛び出してきて、外部電荷を完全に打ち消すような表面電荷になると思えます。 (実際には飛び出さずに、電子軌道を乗り換えるだけですが)  よって導体は電気感受率∞の誘電体ですが、逆にそうなると、電荷分極が起こるより先に内部電場が消えてしまって、表面に移動した自由電子を除き、残りの部分は電子軌道のランダム乗り換えで拡散し、結局分極はほとんど起こらないような気がします。  という訳で理想化すれば、導体の誘電率は真空の誘電率ε0に等しいという話になります。この意味は、電束に関する微分形のガウスの法則を表面電荷に対して、導体表面の法線方向のデルタ関数を使って、強引に電場で書いてやった場合、そこに登場する物質の誘電率が、ε=ε0という意味です。  しかしこのサイトのいくつかのQ&A(金属の誘電率)を読むと、周波数0の直流に対応するような電場の場合(まさにいま考えている外部電場)、誘電率は「-」という記述が見られます。上記のようなモデルは、やっぱり粗すぎるのでしょうか?。  それとも誘電率は「-」とは、電磁場の方程式系を正直に解いた場合に、結局定常状態では電場は導体内部に侵入できないという事を表す記述なのでしょうか?。適切に誘電率「-」ならば、導体内電場なしと解釈できるので。  よろしくお願いします。

  • 分極電荷の面積密度を求める問題です

    2枚の平行導体板間に、厚みd1、誘電率ε1および厚みd2、誘電率ε2の2枚の誘電体板をサンドイッチ状に重ねて挿入した。 導体板の電位差をVに保ったとき、両誘電体が接する境界面上に現れる分極電荷の面積密度σpを求めてください。 解:σp={(ε1-ε2)/(ε1d2+ε2d1}ε0V 考えては見たんですが、さっぱり分からないので教えてください。お願いします。

  • 円筒コンデンサー

    半径がaの導体球S1とない半径がbで外半径がcの導体球殻S2が同心で置かれた導体系にある。両導体間(半径rがa<r<bの領域)には誘電率がε1の誘電体が詰められている。さらには、導体球殻の外側には、半径dのところまで(c<r<dの領域)は誘電率がε2の誘電体でおおわれており、それにより外側r<dの領域は真空(誘電率がε0)である。導体球S1に電荷Q1、導体球殻S2に電荷Q2を与えた場合の任意の半径1(0<r<∞)における電界のr方向成分と電位を求めよ。ただし、電位の基準点は無限遠点とする。  よろしくお願いします。

  • 電磁気の問題をいくつか

    以下の問題を解いたのですが解らない点が多かったので私の回答と一緒に書きます。 間違っている点などありましたら訂正願います、また画像を張るのは初めてなので見づらいかもしれません 問1 図1のように、内円筒の半径a(m)、外円筒の半径b(m)の円軸円筒コンデンサがある。    ただし両円筒の厚さは無視できるものとする。円筒間は誘電率ε(F/m)の均質な誘電体で    満たされているとして以下の問いに答えよ。なお同軸円筒は無限長に近似できるとする (1) 円軸円筒コンデンサの単位長さ当たりの静電容量C(F/m)を求めよ。 (2) 電極間の電位差の値がVであるとき円筒間の誘電体内における電場の強さE(V/m)をa,b,Vを    用いて中心軸r(m)の関数で表せ。また、a<=r<=bにおいて電場の強さが最大になるrはいくらか (3) 円筒間の誘電体内において、絶縁破壊を起こさない範囲で許される最大の電場の強さがEsで    あるとき許される電極間の電位差の最大値Vsを求めよ (4) 外円筒の半径bが決まっている時、(3)で得られたVsをaの関数と考え、Vs(a)の最大値と    そのときのaを求めよ。 解答 (1) E=Q/4πεr^2 からab間の電位差を求め、Q=CVに代入し、C=4πεab/(b-a) 単位長さあたりなのでこれをrで割ったものが答えだと思いました (2)以降は解りませんでした 問2 図2のように同一の平面内に十分に長い直線導線と辺の長さがa,b[m]の長方形コイルABCD     がおかれており、長さaの辺ABは導線に平行でそれからx[m]の距離にある。透磁率は     真空中と同様にμ0である (1) 相互インダクタンスを求めよ (2) 直線導線に、大きさがI1(t)=I0t[A]のように時間t[s]と共に増加する電流が上向きに流れるとき   長方形コイルに祐樹される起電力の大きさV(t)[V]と向きを求めよ (3) 直線導線と長方形コイルABCDにそれぞれI1,I2[A]の直流電流を流した時に、導線と   長方形コイルの間に働く力の大きさF[N]を、直線導線に流れる電流I1によって生ずる磁束密度が   コイルABCDの各辺に及ぼす力を足し合わせることで求めよ。   ただし、直線導線と辺ABの電流の向きは同じとする。 解答 (1) 距離x離れた場所に電流Iが作る磁界Hは H=I/2πxなのでB=μH、φ=BS、φ=MIに代入していき   M=μ0ab/2πx (2) V(t)=-M・dI1(t)/dt = -M・dI0t/dt =-MI0 であり向きは奥から手前方向 (3) 解けませんでした、ローレンツ力を使うのでしょうか? 問3 真空の誘電率をε0として以下の問いに答えよ (1) 図3(1)のように半径a[m]の輪状に電荷+q[c]が一様に分布している時、円の中心を通り円が作る   平面に垂直な直線上における電場の向きと大きさE1をqを用いて   中心からの距離x[m]の関数として求めよ (2) 図3(2)のように半径a[m],長さL[m]の中空の円筒状に電荷+Q[c]が一様に分布している時   円筒中心軸上の電場の向きと大きさE2[V/m]を円筒中央からの距離r[m]の関数として求めよ 解答 (1) E1=q/4πε(a^2+x^2) 上向き (2) E2=q/4πε(a^2+r^2) 上向き  自信がないです 以上です、解らなかったと書いた問題も考えたのですが上手く文章にできなかったため書きませんでした よろしくお願いします。