• ベストアンサー

面積

正葉線 x^3+y^3-3axy=0 (a>0) で囲まれる部分の面積を求めたいです。 x=rcosθ、y=rsinθを代入してまとめると、 r=3cosθsinθ/(cosθ^3+sinθ^3) となりました。 公式を使えば、これの2乗を積分すれば良いのですが、まず積分する範囲が分かりません。そして、これを2乗したやつの積分の仕方が分かりません。 分かる方、お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.2

siegmud です. すみません,ちょっと表現がまずくて,不親切でした. cos^2(θ)で割ると (4)  {tan^2(θ) / [1+tan^3(θ)]^2} × {dθ/cos^2(θ)} の形になっています(本当はこれに 9a^2/2 がかかる). で, (2)  y = tanθ とおくと,(4)の2つめの { } がちょうど dy になっています. なぜなら (5)  dy/dθ = 1/cos^2(θ) ですから. θが 0 から π/2 まで変化するとき,y は 0 から ∞ まで変化しますから 結局 (6)  ∫{0 → ∞} y^2 dy / (1+y^3)^2 を計算すればよいことになります. 一見やっかいそうですが, (3)  y^3 = t とおいてみると,またまた y^2 dy が 数係数を別にしてちょうど dt になっています. なぜなら (7)  dt/dy = 3y^2 dy ですから. つまり,最終的には (8)  ∫{0 → ∞} dt / (1+t)^2 の積分に帰着されます. 係数のところなどはお任せします.

butterfly0244
質問者

お礼

丁寧な回答どうもありがとうございました!ちゃんと解けました(^▽^) またの機会があればよろしくおねがいします。

その他の回答 (1)

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

正葉線は        y        │        │ ※※※    ※   │※  ※     ※※ ※   ※       ※※  ※ ───────※※※──── x        │※        │ ※        │ ※        │  ※        │ のような形です.固定フォントで見てください. モニタから少し離れて目を細くしてみると多少ましですかね. 囲まれた部分,ですから第1象限のところですね. つまり, (1)  0≦θ≦π/2. r=3a cosθsinθ/(cosθ^3+sinθ^3) で(質問の式は a が抜けていますね), (1/2)r^2 をθで積分(範囲は(1)式)すればOK. r^2 の分母分子を cos^2 θで割ると, tanθだけで被積分関数が書けます. ここで, (2)  tanθ = y とおけばうまく行きます. わからなければ,もう一度 (3)  y^3 = t とおいてみてください. 分子にちょうど dy/dt が出ている形になっています. 最終結果は (3/2)a^2 です.

butterfly0244
質問者

補足

回答ありがとうございます。 やりたいことは分かったのですが、cosθ^2で割ってもtanθだけで書き表すことができません。 そこの式を詳しく書いてもらえると嬉しいです。

関連するQ&A

  • 円の面積:πr^2の計算。なぜこうなるかがわからないです

    いつもお世話になります。初歩的な質問で申し訳ありませんが、ひとつどうしても分からないので教えてください。 今読んでいる本で、円の面積を計算する方法が書いてある箇所があるのですが、なぜそうなるかがわかりません。 半径rの円:x^2+y^2=r^2があり、第1象限に点P(x,y)がとってあります。 円の面積Sは、S=4∫(0からr)√(r^2-x^2)dxとなる。ここまでは良いのですがわからないのは以下からです。 --------------------------------------------------- ここでx=rcosθとおくと、dx=rsinθdθです。 したがって、x=0のときθ=0、x=rのときθ=π/2です。 さらに、r^2-x^2=r^2-r^2*(sinθ)^2=r^2*(cosθ)^2 よって、√(r^2-x^2)=rcosθ (その後積分の計算で S=4r^2・∫(0からπ/2)(cosθ)^2 dθ とされ、 最終的にはπr^2が導かれています。) --------------------------------------------------- 質問1:1行目でなぜ「dx=rsinθ」なのでしょうか。私は「dx=-rsinθdθ」かと思いました。 質問2:2行目ではなぜ「x=0のときθ=0」なのでしょうか。私は、「x=0のときθ=π/2で、x=rのときθ=0」かと思いました。 質問3:4行目ではなぜ、「√(r^2-x^2)=rcosθ」になるのでしょうか。私は「右辺=rsinθ」だと思いました。 質問4:積分の式もなぜこうなるのかわかりません。冒頭でdx=rsinθと言ってるのに、ここではdx=rcosθを代入してますしなぜですか? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 私が自分なりに解いた方法では、S=4r^2・∫(0からπ/2) (sinθ)^2 dθとなり、πr^2は導けたのですが、上で書きました本の内容の意味がわからず気持ち悪い状態です。 本は青バックスの「πの不思議」p.49~50です。 私の勘違いかも知れかもしれませんがすっきりしないので、お詳しい方ご教示ください。

  • 高3数C極方程式について質問です!!

    高3数C極方程式について質問です!! y^2=8x+16 を極方程式で表せ という問題なのですが、 僕は、 x=rcosθ、y=rsinθを代入して整理して、 r^2sin^θ-8rcosθ-16=0 としてから解の公式を使って、 r=4cosθ+-√{(-4cosθ)^2-sin^2θ(-16)}/sin^2θ r=4(cosθ+-1)/sin^2θ と解きましたが、-の方は不適らしいんです。 この論理は間違っていますか?? そして合っているなら-の方が不適というのはなぜなのか教えて下さい。

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • もう一つ偏微分の問題をお願いします

    次の写像に伴う面積体積の拡大率を求めよ。 (1) x=rcosΘ y=rsinΘ (2) r=sqrt(x^2+y^2) Θ=arctan(y/x) (3) x=rsinΘcosφ y=rsinΘsinφ z=rcosΘ

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 2重積分

    ∬xdx(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません アドバイスお願いします。

  • 二重積分について。

    x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。

  • 面積

    x=rcosθ, y=rsinθとしrおよびθがそれぞれ√3≦r≦3、0≦θ≦π/2の範囲を動くとき 点(x,y)が動く範囲をSとします。 (1)Sの外形をかき、その面積を求めよ。 (x,y)が動く範囲はそれぞれ、 0≦x≦3, 0≦y≦3で1辺の長さ3の正方形と考えたのですがよいでしょうか?? (2)Sに含まれる長方形うちで1辺がx軸上にあるものの面積の最大値を求めなさい。 (1)の考え方の概形でいくと長方形が含まれるということが理解できません・・ どなたかご教授よろしくお願いしますm(__)m

  • 積分

    先ほど質問しましたが、一部打ち間違えていました。 お手数ですが、再度おねがいします。 ∬xdxdy(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません。