• 締切済み
  • 困ってます

MATLABによるFFTと位相スペクトルについて

純粋な正弦波信号 y=sin2πft ただし周波数f=500MHz をサンプリング周波数2.5GHz,サンプリング数128,256,512,1024の四パターンMATLABでFFTし、パワースペクトルと位相スペクトルを求めました。 結果、パワースペクトルは予想通り500MHzでピーク値をとったのですが、位相スペクトルは各サンプリング数ごとに全く違う値を取りました。 というわけで、 (1)理論上、正弦波の位相スペクトルはどのような値になるのか (2)なぜサンプリング数ごとに位相スペクトルの結果が大きく変わったのか この二点をご教授ください。よろしくおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数5157
  • ありがとう数0

みんなの回答

  • 回答No.1
  • ninoue
  • ベストアンサー率52% (1288/2437)

サンプリング周波数と信号周波数の比が小さく、整数倍の関係になっている為に問題が発生しているのだと思われます。 サンプリング周波数が信号周波数よりもずっと高いと問題は少ないでしょう。 或いはその比が数倍程度でしたら、整数倍の関係に無い方がサンプル数の増大につれて位相も次第に正しい値に収斂していくのではないでしょうか。 理論上どうなるかは、理論通りプログラム上でftの周波数でy=sin2πftの関数を発生させ、その5倍の周波数でサンプルしてFFTを求める事しか思いつきません。 このサンプルの関係では、5点毎に1サイクルの信号のサンプリングが繰り返されるので、128,256,512,1024サンプルでは、最後に3,1,2,4サンプルの分が不完全周期分として残り、これが残留位相分として変換されて現れるのではないでしょうか。 (なお質問は数学カテゴリの方が適しています)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • FFTの結果ついて

    ある50kHzの信号を1024点FFTにかけ、横軸周波数、縦軸をパワースペクトルに変換しました。  しかし、0Hzのところにとても大きな値が出力されました。 3Hzの正弦波を入力した際にはちょうど3Hzのところにピークが現れたので計算は合っていると思うので、原因がよくわかりません。   後、スペクトルをdb表示にしたいのですが、計算方法がわかりません。 申し訳ないですが、どなたか教えて下さい。

  • MATLABを用いたFFT

    現在40kHzの正弦波をMATLABを用いてFFTをかけましたがしかし思った結果になりません。作成したmファイルの内容は以下のとおりです。 data = xlsread('test001.xls','Sheet1');   %excelファイルの読み込み data = data(:,2);   %2列目を選択 Y = fft(data);    %fft Pyy = Y.*conj(Y)/2500; %スペクトルを求める f = 40000 * (0:2499)/2500;          %範囲を指定 plot(f,Pyy(1:2500))             %グラフを作成 本当に困っているので、解答お願いします。

  • フーリエスペクトルの振幅について

    ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの 振幅値について教えて下さい。 今想定している離散フーリエ変換の式は一般的なもので Σ(k=0~N-1) f(k)exp(-2πkni/N) を考えています。 また、離散フーリエ変換して得られるスペクトルは √(Re^2+Im^2) で計算します。 離散フーリエ変換を適用する関数を、 振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。 (この2つの信号は別々の信号で合成されていません。) サンプリング周波数を20[Hz]とした場合、 サンプリングして得られるデータ列はそれぞれ、 直流: 「1, 1, 1, 1」 正弦波: 「0, 1, 0, -1」 となると想定されます。 (正弦波をサンプリングする場合は位相が関わってきますが、 今回は気にしないで下さい。) このデータ列に対して上記の離散フーリエ変換を適用した場合、 得られるフーリエスペクトルの振幅値はそれぞれ、 直流: 「4」(直流のフーリエスペクトルの振幅値値) 正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値) となります。 (データ点数は上の通り4点) ここで質問なのですが、 離散フーリエ変換して得られるスペクトルの振幅値から 元の関数の振幅値を求める場合、 フーリエスペクトルをサンプリングの総データ点数で割ることは 数学的に納得できます。 しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、 直流: 「4 -> 1」 正弦波: 「2 -> 0.5」 となってしまい、直流は正しいのですが、 正弦波の元の振幅値を正確に求めることは出来ません。 フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、 「フーリエスペクトルの振幅値*2/データ点数」 としてやらなければいけません。 上記のことに関して、 なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。

  • 振幅スペクトル、位相スペクトル→原信号の導出法

    matlabにてある信号をfftした結果から振幅スペクトル、位相スペクトルをそれぞれ求めたのですが、その2つから元の信号を得る方法を教えてください。

  • ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値に

    ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値について教えて下さい。 今想定している離散フーリエ変換の式は一般的なもので Σ(k=0~N-1) f(k)exp(-2πkni/N) を考えています。 また、離散フーリエ変換して得られるスペクトルは √(Re^2+Im^2) で計算します。 離散フーリエ変換を適用する関数を、 振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。 (この2つの信号は別々の信号で合成されていません。) サンプリング周波数を20[Hz]とした場合、サンプリングして得られるデータ列はそれぞれ、 直流: 「1, 1, 1, 1」 正弦波: 「0, 1, 0, -1」 となると想定されます。 (正弦波をサンプリングする場合は位相が関わってきますが、今回は気にしないで下さい。) このデータ列に対して上記の離散フーリエ変換を適用した場合、 得られるフーリエスペクトルの振幅値はそれぞれ、 直流: 「4」(直流のフーリエスペクトルの振幅値値) 正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値) となります。 (データ点数は上の通り4点) ここで質問なのですが、 離散フーリエ変換して得られるスペクトルの振幅値から元の関数の振幅値を求める場合、 フーリエスペクトルをサンプリングの総データ点数で割ることは数学的に納得できます。 しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、 直流: 「4 -> 1」 正弦波: 「2 -> 0.5」 となってしまい、直流は正しいのですが、正弦波の元の振幅値を正確に求めることは出来ません。 この例の場合、フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、 「フーリエスペクトルの振幅値*2/データ点数」 としてやらなければいけません。 上記のことに関して、なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。 当方、数学についてはあまり詳しくないため、簡単に説明して頂けると幸いです。

  • 離散フーリエ変換のスペクトルについて

    関数f(x)=2sin(πx)をx=0~2まで等間隔1000点でサンプリングし、 離散フーリエ変換 Σ(k=0~N-1) f(k)exp(-2πkni/N) の式から、言語プログラムで計算する式をつくり、1000個の実数Reと虚数Imを得ました。 ピークはもちろん周波数πのときで、スペクトルの値が1000でした。 √(Re^2+Im^2)をスペクトル値、√なしをパワースペクトル値をいうそうですが、元の関数の振幅2とこのスペクトル値とはどのような関係があるのでしょうか? 異なる正弦波を混ぜれば、スペクトル値を見ることによって振幅の比は分かりますが、スペクトル値と振幅には式的になんらかの関係は存在するのでしょうか?  波のエネルギーは振幅の2乗になると思い、2^2=4がスペクトル値としてでる事を期待していましたが途方もなく異なる値が出てしまいました。 どうぞよろしくお願いします。

  • FFTデータ数が少ないと直流成分が大きく変動する?

    FFTの振幅スペクトルから実効値算出のために単一正弦波をFFTしてみると、(1)のように計算データ点数が少ない場合、窓関数の位置によって「0Hz直流成分」のFFT結果値が大きく変動してしまいます。((2)(3)は窓関数がどの位置でも問題ありません。) この(1)(1サイクル64点=FFTデータ数64個)のような計算の場合、どのように実効値算出すればよいでしょうか?  また、正常な場合でもこれらのサンプル間隔(0、30Hz、60Hz等)の"すき間の部分”は考慮しなくても、全て計算結果に出力されているということでよいでしょうか? 単一正弦波(60Hz)   ((最大値5388.9v=実効値3810.5v)、サンプリング3.84KHz=1サイクル64点)   (実効値換算式=前半の√(実数^2+虚数^2)の合計/(FFTデータ数/2)/√2) (1)FFTデータ数 64個⇒0Hz(0.00~1905.2)???、60Hz(1905.2),120Hz(952.6)、180Hz(0.0)、          ⇒合計( ??? ) (2)FFTデータ数128個⇒0Hz(0.0), 30Hz(952.6),60Hz(1905.2),90Hz(952.6), 120Hz(0.0)、          ⇒合計(3810.4) ≒実効値 (3)FFTデータ数256個⇒0Hz(0.0),15Hz(0.0),30Hz(0.0)、                45Hz(952.6),60Hz(1905.2),75Hz(952.6), 90Hz(0.0),           ⇒合計(3810.4) ≒実効値

  • FFTプログラムで問題が生じました。

    C言語でFFTのプログラムを作成しています。入力として周波数の既知な正弦波を利用してプログラムの動作確認をしているのですが、サンプリング周期0.01secの状態でサンプリング数が4096点と8192点の時だけスペクトルの結果がおかしくなってしまいます。例えば、10Hzの入力に対して他の点数(512~32768点)では、きちんと10Hzの位置にスペクトルが現われるのですが4096点と8192点の時は、10Hzの他に同じ大きさの40Hzのスペクトルが現われてしまいます。入力が5Hzの時は、45Hzに現われます。ちょうど折り返し雑音のような誤作動なので何か明確な原因があるのではないかと思うのですが全く分かりません。このようなことはよくあるのでしょうか?それとも単にプログラムのミスでしょうか。回答お願いします。

  • FFTを使って信号から特定の周波数を抜き去る方法

    FFTを用いてある時系列データから特定の周波数の成分を抜き去ろうと思っていますが、 うまくいかないのでお伺いします。 調べてみると、スペクトルを出すとき、例えば同じ振幅で周波数の異なるの正弦波を 10個入れても全て同じ振幅にならず、振幅の大きさにばらつきが出ていて周波数成 分の成分の推定がうまくいっていないようです。FFTの2乗のデータを小さな周波数区 間で積分してスペクトル密度にしても、先ほどの10個の正弦波の振幅がそろわない のと、周波数推定が悪くなりうまく、引き去れなくなっています。 よくある状況だと思いますが、どういう工夫が必要なのでしょうか。 ちなみに、FFTのルーチンはnumerical recipeとFFTWの二つで試しました。

  • 連続時間正弦波信号と離散時間信号

    デジタル信号処理のレポートでこんな問題が出されたんですが解き方が解らなくて苦戦してます!!!。どなたか教えて頂けませんか? 問題: 周波数11[Hz]の連続時間正弦波信号をサンプリング周波数 8[Hz] でサンプリングした。 サンプリングによってこの離散時間信号と全く同じ波形となる連続時間正弦波信号の うち、最も低い正の周波数をもつ正弦波の周波数は何[Hz]か?