• ベストアンサー
  • すぐに回答を!

数IIの図形と方程式の問題ですが、分かりません;;

図形と方程式の問題なんですが、解き方がよく分かりません; 分かる方いらっしゃったらおねがいします>< aを定数とし、2直線 r:y=2x、m:y=3分の1x と、点(2、-1)を通り、 傾きがaの直線nがある。 (1)直線nの方程式は、y=ax-(ア)a-(イ)であり、3直線r、m、nで三角形ができない のは、a=(ウエ)/(オ) 、 (カ)/(キ) 、(ク)のときである。      分数が上手く書けなくてすいません。3行目と6行目の3分の1と /で表しているのは 全部分数です。(ア)~(ク)に入る答えをできれば早めにお願いします。      

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • eco1900
  • ベストアンサー率66% (59/89)

二直線rとmは定まっているので、グラフに書き出すこともできますよね。 残りの直線nについてですが・・・n:y=a(x-2)-1となります。 三直線が三角形を成さないとは、次の(あ)(い)(う)の場面が考えられますよ。 (あ)n//r   →傾きの部分を比較して、a=2 (い)n//m   →傾きの部分を比較して、a=1/3 (う)nがrとmの交点と通る   →rとmの交点は、原点(0,0)なので、nがこの点を通ると考えます。   →nの式へ(0,0)を代入して解くと、a=-1/2

この投稿のマルチメディアは削除されているためご覧いただけません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

図までつけていただいてありがとうございました!! すごく分かりやすいです><

その他の回答 (2)

  • 回答No.2

直線nは(2、-1)を通るので、 y = ax - (ア)a - (イ) にx = 2, y = -1を代入すると、 -1 = 2a - (ア)a - (イ) (ア)2 (イ)1 3直線で三角形ができないのは、rとnが平行の時、mとnが平行の時、nがrとmの交点(0,0)を通る時、です。 (ウ)- (エ)1 (オ)2 (カ)1 (キ)3 (ク)2 でどうでしょう?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

答えを分かりやすく書いていただいて ありがとうございます>< 感謝でいっぱいです!!!!

  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

nの式をy=ax+bとすると、(2、-1)を通ることから -1=2a+b b=-2a-1 ⇒これが(ア)と(イ)です。 三つの直線で三角形ができないのは (1)三つの直線が一点で交わる (2)いずれか二つが平行である 場合です。(1)はrとmの交点、つまり原点をnが通るということです。 (2)はnの傾きがr、またはmと等しいということです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

1つ1つていねいに ありがとうございます!!! すぐ分かりました><

関連するQ&A

  • 数II 図形と方程式

    明日の授業の予習をしているのですが、解けない問題があり、困っています。わかる方は教えてくださいっ。 3点A(4,1)B(-2,-1)C(2t+3,-6t+4)と直線L:y=2x+3がある。 ただし、tは実数とする。 (1)点Aと直線Lとの距離は ア√イ である。 →これはわかりました。  |8-1+3|/√5=2√5 ですよね。 (2)tが変化するとき、点Pは直線M:y=ウエx+オカ上を動く。 また、2直線L,Mの交点Cの座標は、C(キ,ク)であり、 △ABCの面積はケコである。 →一応できたんですけど、直線Mの求め方があっているか不安です;;  求める直線をM:y=ax+bとする。  点Pは直線M上にあるので、  -6t+4=a(2t+3)+b 整理して、  2(a+3)t+3a+b-4=0 a+3=0,3a+b-4=0 これを解いてa=-3,b=13 よって、直線Mはy=-3x+13 こういう求め方でいいんでしょうか…?? (3)点Cを(2)の点とするとき、△ABCと△ABPの面積の比が3:1となるtの値は、サ/シ,ス/セである。ただし、サ/シ<ス/セとする。 →問題はここです!!  解答はついているのですが、解説が無いのでほんとに困ってます。  ちなみに答えは、サシ→16、スセ→56 です。  他の問題の答えは、  ア√イ→2√5、y=ウエx+オカ→y=-3x+13、C(キ,ク)→C(2,7) △ABCの面積ケコ→20  となっています。 よろしくお願いしますっ!!

  • 数II 図形と方程式

    はじめまして。 円C:x^2+y^2+2ax+4ay-10a-25=0の中心の座標は{-a,(アイ)a}であり、 円Cはaの値によらず2定点A(ウエ,オ)、B(カ,キ)を通る。 (ウエ<カとする。) 点A,Bにおける接線の傾きはそれぞれ(-a+ク)/(ケa+コ)、-(a+サ)/(シa)である。 ただし、分母が0となる場合は除いて考える。 この2定点A,Bにおける円Cの2本の接線が互いに平行であるならば、a=(スセ)である。 (アイ)-2 (ウエ,オ)-3,4(カ,キ)5,0になったのですが、これでいいのでしょうか。 点A,Bの傾きの求め方がわかりません。 どなたかわかる方がいましたら、回答よろしくお願いします。

  • 解説お願いします!対数方程式,最大最小,微分

    【問1】実数aに対し、xの方程式log2(x-2)+2log4(5-x)=log2(a-x)…(1)を考える。 これを解くことは、ア<x<イかつx<aの範囲で、方程式-x^2+ウx-エオ=a…(2)を解くことと同じである。 (1)方程式(2)は、a=カのとき重解x=キをもつ。 したがって、方程式(1)がただ1つの解をもつのはa=カまたはク<a≦ケのときである。 (2)a=ケのとき、方程式(1)の解はx=コである。また、そのときの(1)の右辺の値はサである。 【問2】 (1)不等式x^2-2x≦0を満たすxの値の範囲はア≦x≦イである。 xがこの範囲にあるときy=4^(x)-2^(x+2)+5の最大値と最小値を求めよ。 X=2^xとおくと、Xのとりうる値の範囲はウ≦X≦エであり、y=(X-オ)^カ+キである。 したがって、yはx=クのとき最大値ケをとり、x=コのとき最小値サをとる。 (2)aは定数とする。関数y=log3(1x/2+2a)においてx=3のときy=mであり、x=15のときy=nであるとすると、3^n-3^m=シである。 更に、m,nがともに正の整数であるとすると、m=ス、n=セとなり、a=ソ/タである。 【問3】Oを原点とする座標平面において、放物線y=2x-x^2をCとする。 C上でx座標がaである点をP、2-aである点をQとする。ただし、0<a<1とする。 また、点Pからx軸に垂線を下ろし、直線OQとの交点をRとする。このとき、点Rのy座標はa^アである。よって、PR=-イa^2+ウaであり、三角形PQRの面積Sをaを用いて表すとS=エa^3-オa^2+カaとなる。 したがって、S´=キ(クa-ケ)(a-コ)となり、Sはa=サ/シのとき最大値ス/セソをとる。

  • 図形と方程式の問題【切実】

    数学を教えてください! ヒントだけでもいいので!! 3点 A(4,1),B(-2,-1),P(2t+3,-6t+4)と直線l:y=2x+3がある。ただし,tは実数とする。 (1) 点Aと直線lとの距離はア√イである。 (2) tが変化するとき、点Pは直線m:y=ウエx+オカ上を動く。また,2直線l,mの交点Cの座標はC(キ,ク)であり,△ABCの面積はケコである。 (3) 点Cを(2)の点とするとき,△ABCと△ABPの面積の比が3:1となるtの値はサ/シ,ス/セである。ただしサ/シ<ス/セとする。 ※ア~セには数字,もしくは+,-の記号が入ります。 明日当たってしまっているので切実です。 どうぞヒントだけでもいいのでよろしくお願いします!

  • 図形と方程式の問題です。

    図形と方程式の問題です。 (2)~(4)を解いて下さい。 点A(8/3、2)と 円 x^2+y^2=4…(1), 円 x^2+y^2-8x-6y+24=0…(2)がある。 (1) 円(2)の中心の座標と半径を求めよ。 (2) 点A を通り、円(1)に 接する 直線の方程式 を求めよ。 (3)(2)で求めた 直線は 円(2) の 接線 であることを示せ。 (4)(2)で求めた 直線以外 の 円(1) と 円(2) の 両方に接する 直線の傾きを求めよ。

  • 高3の図形と方程式の問題です。

    高3の図形と方程式の問題です。 (1)は解けたとおもいますが(2)~(4)を教えていただけないでしょうか。 点A(8/3、2)と 円 x^2+y^2=4…(1), 円 x^2+y^2-8x-6y+24=0…(2) があります。 (1) 円(2)の中心の座標と半径を求めよ。 (2) 点Aを通り、円(1)に接する直線の方程式を求めよ。 (3)(2)で求めた直線は円(2)の接線であることを示せ。 (4)(2)で求めた直線以外の円(1)と円(2)の両方に接する直線の傾きを求めよ。   (1)は (x-4)^2+(y-3)^2=1     中心(4,3)半径1の円   (1)はこれでいいとおもうのですが....。            よろしくお願いします

  • 円と方程式

     次の問題を教えて下さい。 (1)点A(4 2)を中心とし 円x^2+y^2=5 に接する円の方程式は? (2)円x^2+y^2=4 に接し 傾きが3/4 である直線の方程式を求めよ。 (3)円 x^2+y^2=4 の接線のうち 傾きがmであるものは y=mx±r√1+m^2 であることを示せ。  問題に解説が付いていなかったので よろしくお願いします。

  • この問題の解き方教えて下さい

    数学のマーク問題です 2次方程式(a-1)x^2‐(2a-1)x+a-2=0…(1)について (1)a=4のとき (1)の解は x=ア/イ,ウ (2)2次方程式(1)の実数解の個数は a<エ/オのときカ個 a=エ/オのときキ個 エ/オ<a<ク,ク<aのときケ個である。 (3)2次方程式(1)の実数解が1個のとき、その解はx=コサである ア/イ= ウ= エ/オ= カ= キ= ク= ケ= コサ= という問題がよくわかりません。 どうか解答お願いします。 途中式もあると嬉しいです。

  • 数II 複素数と方程式

    学校で使っているテキストにわからない問題があるのですが、解説が無いので困ってます;; わかる方は教えてください。 整式f(x)=x^3+(a-2)x^2-3(a-1)x+2(a-3)がある。ただし、aは実数の定数とする。 (1)f(x)=(x-ア)(x^2+イx-ウ+エ)と因数分解できる。 (2)方程式x^2+イx-ウ+エ=0・・・・・(1)の2つの解の差が3となるとき、a=オカ、キであり、 a=オカのとき、方程式(1)の解はx=ク、ケである。 ただし、ク<ケとする。 (3)3次方程式f(x)=0が異なる3つの正の実数解をもつようなaの値の範囲は a<コサ、シス<a<セソ である。 (1)と(2)はわかったんですけど、(3)が…汗 ちなみに答えは、 ア2イaウaエ3オカ-7キ3ク2ケ5コサ-7シス-7セソ-6 です。 お願いしますっ。

  • 図形と方程式

    点P(0,-3)を通り、円x^2+y^2+2x-1=0に接する直線の方程式と、接点の座標を計算で出そうとしたんですけど、難しくてでません。自分は計算力がないんですけど、だれか計算をまじえて細かく教えてください。自分でのやり方は接線の傾きをmとして点と直線の距離の公式を使いました。