完備化で

有利数体Qから次のようにして連続の公理をみたす順序体Kが構成される。有理数列でコーシー列となるものの全体をAとする。Aは...

grothendieck さんからの 回答

  • 2003/10/14 17:53
  • 回答No.2
grothendieck

ベストアンサー率 62% (328/524)

私はこの問題は環であることは既知として体であることを示すのが求められているのだと思います。すなわち、0を除き、積の逆元が存在することです。
[An]≠0の代表元(An)を一つとり、(Bn)を
 Bn = 1/An (An≠0のとき)
 Bn = 1 (An=0のとき)
とします。[An]≠0より適当なε>0をとると、どんなNをとっても|An|>εとなるn>Nが存在するのでそのようなεを一つ固定します。(An)がコーシー列であることよりl, m>N1のとき
 |Al - Am|<ε/2
となるN1が存在します。すると|An|>εとなるn>N1が存在し、m>nとなる全てのmについて|Am - An|<ε/2だからAm≠0, AmBm=1となるので
 (An)(Bn) =1 (1と同値の意味)
すなわち(An)は逆元を持ちます。あとは(Bn)の同値類が[An]の代表元の取り方に依らないことを言わなければなりません。そちらは残しておくことにします。
お礼コメント
raul-figo

お礼率 73% (73/99)

収束条件からですね。あー、公理、定義、定理をまだ使いこなせていませんね、僕は。もっと勉強しないと、なんせ僕には才能が無いもんですから努力する他ありません。回答ありがとうございました。
投稿日時:2003/10/15 13:01
この回答にこう思った!同じようなことあった!感想や体験を書こう!
この回答にはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。
関連するQ&A
  • 実数のコーシー列の積 数学・算数

    有理数の数列A={an},B={bn} がそれぞれ実数a,bに収束する時、AB=an*bn はa+bに収束する事を言えというもんだいです。 定義『Sを実数のコーシー列{an}とし、anは実数aに収束し、もし正の整数rが与えられた時に、|an-a|<Φ(1/r) n>Nを満たすnが存在する場合、Sの極限はaと言える』 と式変形を使って、 |anbn-ab|=<|anbn-an*b|+|an*b-ab|=|an||bn-b|+|b||an-a|...(1)と変形したのですが、ここから先に行けません。何とかして(1)<Φ(1/r1)見たいな感じに出来れば、 abに収束が証明できると思うのですが。anは有界なので|an|=<M(Mは実数)とできる所までは分かりますがこのMの取り扱いと、|b|の取り扱いに 手間取ってます。どなたか分かる方教えてください。分かるようで分かんなくて困ってます。宜しくお願いします。...

  • 数列の極限の証明 数学・算数

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。...

  • コーシー列 同値 数学・算数

    コーシ列の問題 コーシ列の問題 コーシー列についての質問です。 数列{an}[∞,n=1]をQ(有理数)の中のコーシー列とする。 bn=an+1/3n(n=1,2,…)とするとき、次の問題に答えよ。 (1)数列{bn}[∞,n=1]はQの中のコーシー列であることを証明せよ。 (2){an}[∞,n=1]~{bn}[∞,n=1](同値)であることを証明せよ。 教えてください。 (1)は |bmーbn| = ・・・ ≦|amーan|+|1/3mー1/3n| =e みたいな流れで証明したのですが、 (2) 反射律 対称律 推移律 を用いて照明するのらしいのですが、 良く分かりません。...

  • 数列の問題 数学・算数

    次の数列の問題の解答をお願い致します。 2つの数列{an},{bn}は、a1=5,b1=2で、 漸化式(n=1,2,3,…) an+1=4an-3bn bn+1=2an-bn  をみたす。 a1=アイ,b1=ウ である。 数列{cn}をcn=an-bn(n=1,2,3,…)を定めると、 数列{cn}は cn+1=エcn をみたす。 よって、数列{cn}の一般項は cn=オ・カ^n-1 である。 また、pを定数とし、数列{bn}をdn=an-pbn(n=1,2,3,…)と定める。 すべての自然数nについて、dn+1=dnが成り立つのは p=キ/ク のときであり、このとき数列{dn}の一般項は dn=ケ である。 以上より、数列{an},{bn}の一般項は、それぞれ an=コ・サ^n-1-シ bn=ス・セ^n-ソ  である。 さらに、数列{anbn}の初項から第n項までの和∑akbkは タ・チ^2n+1-ツテ・ト^n+2+ナニn+ヌネ となる。 アイ=14、ウ=8、エ=2までは解けたのですが、 以降、行き詰っています。...

  • 数列 数学・算数

    二つの等差数列{an},{bn}に対してan+2bn=5n-7/2,anbn=3n^2-4n+5/4が成り立つとする。 ここで、a1=1であれば、b1=ア/イである。このとき、{an}と{bn}の公差をそれぞれd,eとすればd+2e=5ウ、de=エ、d/4+e=オとなる。 したがって、an=カn-キ,bn=ク/ケn-コ/サで与えられる数列である。 次に、ck={(ak+3)^2}/4bk+11とおくと、Σ(k=1~n)ck=シ/スn^2+nである。 アとイはn=1を条件式に代入して出しました。 ウはa2=a1+d,b2=b1+eとして条件式に代入して出しました。 エとオも同じように出そうとしたのですがうまくいきません。 回答お願いします。...

ページ先頭へ