• ベストアンサー

平面上に8本の直線があり、そのいずれの3本も1点で交わることがないする

平面上に8本の直線があり、そのいずれの3本も1点で交わることがないする。 8本の直線のいずれの2本も平行でないとき、それら8本の直線によって出来る三角形の総数は? という問題で、答えが「8本の直線から3本を取り出す組み合わせなので、8C3」 としかないのですが、なぜそうなるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

おはようございます。 「交点の数」と同じような問題ですね。 三角形には 3つの辺が必要なので、その 3辺(3本の直線)を選ぶということなのですが。 手順を追って考えてみましょう。 1) まずは直線 1本を選びます。(これを 直線:L1とします) この直線には、残り 7本の直線との交点があります。(∵いずれの 2本も平行ではないから、必ず交わる) そして、この直線上の交点は 7つあります。(∵いずれの 3本も 1点では交わらないから) 2) 7つの交点から 2つ点を選びます。 これは、残り 2本の直線(L2, L3)を選んでいることと同じです。 これら 2本の直線も必ず交わりますから、三角形ができあがります。 3) 上で選ばれた三角形は、1)で L2を選ぶ場合、L3を選ぶ場合、それぞれで重複してしまいます。 よって、その分を除外しなければなりません。 これを計算式にすると、 8C7× 7C2÷ 3= 8!/(7!1!)× 7!/(2!5!)÷ 3= 8C3とおり と一致します。 このような数え方でもいいのですが、 3本直線を選べば必ず三角形ができあがることがわかったので、単純に 8C3とおりとしても構わないのです。 1)のところで、「いずれの・・・」の 2つの条件が入ってくるので、このように考えることができることになります。

mm1614
質問者

お礼

分かりやすい説明を丁寧にありがとうございました^^

その他の回答 (1)

  • IJHSM
  • ベストアンサー率41% (5/12)
回答No.1

とりあえず三角形を作るには3本の直線が必要です これはいいですよね? 3本の直線の選び方が8C3であることは理解できると思います しかしここから少し考えなければいけません 3本直線を選んだが三角形ができないことが起こるかを考えます i)直線が交わらない つまり平行な2直線を選んでは三角形ができるわけがありません よって平行でない直線を3つ選ぶ必要があります しかし、問題にいずれの2本も平行でないと書いてあるため問題ありません では平行でなければ三角形が出来るでしょうか? ii)3直線が1点で交わる このとき三角形ができず点になってしまいます しかしこれもいずれの3本も1点で交わることがないすると書いてあるため問題なし よって答えは最初に出した8C3のままでいいのです 問題によっては1組だけ平行であるなど条件がついている場合もあるので気をつけましょう 確かに「8本の直線から3本を取り出す組み合わせなので、8C3」というだけでは不十分だと思います

mm1614
質問者

お礼

>問題によっては1組だけ平行であるなど条件がついている場合もあるので気をつけましょう (2)がまさにそうです^^ありがとうございました

関連するQ&A

  • 平面上にそれぞれ平行でない7本の直線があり、3本以上のどの直線も1点で

    平面上にそれぞれ平行でない7本の直線があり、3本以上のどの直線も1点で交わらない時、これらの直線によって平面は幾つに分けられるか? 答え29個 らしいのですが、全く考え方?何を言っているのか? 可能な限り解り易く教えて頂けないでしょうか?

  • 平面上に直線をどの2本も平行でなく、どの3本も1点で交わらないように引

    平面上に直線をどの2本も平行でなく、どの3本も1点で交わらないように引いていくとき、交点の個数がn本でnC2個となるのはなぜですか。  解答には2本の直線によって1つの交点が交わるから、と書いてあるんですが、なぜ組合せの式が出てくるのかわかりません。  たとえば2本だと2C2=1個、3本は3C2=3個…となっています。実際に書いてみて、そうなっていました。でもなぜその式で出るのか全く分かりません。 詳しく教えてください。

  • 直線と平面の平行

    立体幾何学の証明で疑問があったので質問します。 平面に平行な直線に、その平面上の1点を通って平行に引いた直線は、元の平面に含まれる。・・・(1) という定理があります。 添付した図では、直線YY'と平面Pがあってこれが平行なときに、平面P上の1点Aを通過して、YY'に平行な直線XX'は平面P内に含まれるというものである。 この定理(1)から、平行2直線の1つの交わる平面は他の1つとも交わる・・・(2)の定理も導ける、と本に書いてあります。 題意は、平行線XX',YY'があるとき、一方のXX'と交わる平面Pは他の一方のYY'とも交わる。 証明は、もし仮に平面PがYY'に平行であるとすれば、XX'はP内に含まれなければならない。ゆえに、PはYY'に平行ではなく、したがって、YY'と交わる。 ここから疑問点を書きます。定理(2)は、XX'と交わる平面Pと仮定しているので、定理(1)の結論、YY'に平行な直線XX'は平面P内に含まれるというものである。を否定し対偶をとった証明になっていると自分は思ったのですが、平面と直線の位置の関係は、交わる、平行、平面が直線を含む。の3つあるので、XX'と交わる平面Pと仮定することは、直線XX'は平面P内に含まれるの否定になるのかどうかが、疑問です。平行の場合はどうなのかが考える必要があるのかどうかが分からないのです。 どなたか定理(1)を利用した定理(2)の証明の解説と、直線XX'は平面P内に含まれるは、直線XX'と交わる平面Pで否定できるかを解説してください。お願いします。

  • 平面

    条件を満たす平面の数とどんな時が教えてください。 (1)1点を含む平面 3点のとき、1直線と1点のとき、2直線が平行、2直線が交わるとき、4つですか? (2)1つの直線を含む平面 3点のとき、1直線と1点のとき、2直線が平行、2直線が交わるとき、4つですか? (3)2本ずつが交わる3つの直線を含む平面 どのように考えるのかわかりません (4)1つの直線と直線外の1点を含む平面 1つ (5)平行な2つの直線を含む平面 1つ (6)1点で交わる3つの直線を含む平面 わかりません (7)3つの平行な直線を含む平面 わかりません。 誰か教えてください。

  • パズル的難問、平面上の異なるn直線でできる交点数

    にゃんこ先生といいます。 平面上に異なる2直線があったとします。 「=」型のとき、交点数は0個。 「×」型のとき、交点数は1個。 平面上に異なる3直線があったとします。(同一点で交わっていてもすべて平行でもかまいません。) 「≡」型のとき、交点数は0個。 「*」型のとき、交点数は1個。 「キ」型のとき、交点数は2個。 「△」型のとき、交点数は3個。 平面上に異なる4直線があったとします。(同一点で交わっていてもすべて平行でもかまいません。) 交点数は、0個、1個、3個、4個、5個、6個の場合があります。交点数が2個の場合はありません。 このように考えていくと、平面上の異なるn直線でできる交点数の可能性はどうなるのでしょうか? 0個や1個やn(n-1)/2個の可能性があるのはすぐに分かります。 いろいろ検索したのですが、参考となるサイトがまったく出てきませんでしたので、参考サイトを教えていただく形でもかまいません。 直線を増やしていったときのハッセ図を見てみたいです。 なお今回と趣旨は異なりますが、「平面にn本の直線をどの2本も平行でなく、また、どの3本も1点で交わらないように引いたときにできる三角形の領域の総数」の話題は見たことがあります。

  • ヒルベルトの点・直線・平面の「定義の仕方」について

    『高校数学+α:基礎と論理の物語』(著: 宮腰忠)という書籍がPDFファイルになったもの↓ 第1章 数 http://www.h6.dion.ne.jp/~hsbook_a/ch_1.pdf を読んでいるのですが、27~28ページに、  19世紀末期,ドイツの数学者ヒルベルト(DavidHilbert,1862~1943)は,著書『幾何学基礎論』において,点・直線・平面が関係するある公理系を提唱しました.彼は,点・直線・平面といった基本的対象,および,‘存在する’,‘の間に’,‘と合同’といった基本的関係を「基本概念」と考えて,それらに直接的な定義を与えず,基本概念は,その公理系の中で,それらが満たすべき条件によって間接的に定義されていると見なしました.つまり,点・直線・平面は,公理系に述べられている,それらの間の相互関係によって定義され,また‘存在する’,‘の間に’,‘と合同’などの基本的関係も定義されるというわけです.このようなことはペアノの公理系が自然数を定義するだけでなく,未定義な‘次の者’n′から‘1を加える’演算が自然に定義されたことに対比できるでしょう.  彼が友人の数学者と酒場でビールを飲みながら,“点・直線・平面という代わりに,テーブル・椅子・ビールジョッキと言うことができる”といったことは有名です:公理系の中で,点・直線・平面の用語を,例えば,T・C・Hと置き換えたとしましょう.まず,T・C・Hは公理系の中で,それぞれ,点・直線・平面が満たすべき基本的性質を当然ながら満たします.次に,T・C・Hに課せられた公理系の条件によって,理論は公理系のみから完全に演繹的に展開され,T・C・Hに課せられた一連の定理が得られます.それらの定理は点・直線・平面が満たすべき定理に一致します.したがって,T・C・Hは,それぞれ,点・直線・平面と同一視せざるを得ないことになります.このことを指して,点・直線・平面は間接的に定義されているというわけです.このような定義の方法はまさに究極の定義といえるでしょう.点・直線・平面などの基本概念は,直接的定義を必要としない「無定義用語」になりました. という文章があるのですが、どういう事なのでしょうか? 「間接的に定義する」というのは、27ページ下部に載っているような公理群を考え、それを満たすようなものとして点・直線・平面を定義する訳ですよね? でも点・直線・平面を、T・C・Hと置き換える必要性が良く分かりません。 「『点・直線・平面を間接的に定義する公理群』から導かれる定理」と「『T・C・Hを間接的に定義する公理群』から導かれる定理」が一致するという事ですか? 仮にそうだとしてもただの言い替えな気がしますし…。 22ページには「かなりレベルが高い内容なので,‘お話’と考えて‘フーン,そういうことか’程度の理解で十分でしょう.」とも書かれていますし、高校数学レベルでは理解するのは無茶ですかね? 回答宜しくお願いします。

  • 点と直線

    1,点(-2,3)を通り、次の直線に平行な直線の方程式を求めよ。 (1)2x+y=3 (2)y+4=0 2,点(-3,1)を通り、次の直線に垂直な直線の方程式を求めよ。 (1)x-3y-5=0 (2)y-5=0 答えはあるのですが途中式が分からないのでお願いします。

  • 平面上の三角形の三辺の直線をα、β、γとする。直線

    平面上の三角形の三辺の直線をα、β、γとする。この平面上の任意の直線lはl=λ1α+λ2β+λ3γなる形であらわせることを示す問題です。 (1)平面上の三角形の三辺の直線をα、β、γとする。この平面上の任意の直線lはl=λ1α+λ2β+λ3γなる形であらわせることを示せ (2)空間内の四面体の四個の面を含む平面をそれぞれπ1,π2,π3,π4とする。 任意の平面πはλ1π1,λ2π2,λ3π3,λ4π4なる形であらわせることを示せ 上の問題がわかりません。 わかるかた教えてください。 よろしくお願いします。

  • 平面上の3直線の平行関係

    平面上の3直線の平行関係 『同一平面上の直線p, q , rにおいて、 p//q , p//r ならばq//r』は 中学レベルの初等幾何で証明可能でしょうか? 平行の定義は 「どこまでいっても交わらない」 「2直線がある直線と垂直に交わる」 などあるみたいですが、どちらでも結構ですので、 よろしくお願いします。

  • 平面分割

    少しややこしいことを書きますが、どなたかわかりやすいご回答いただければ幸いです。 まず問題が、 『平面上にそれぞれ平行でない6本の直線があり、3本以上のどの直線も1点で交わらないとき、これらの直線によって平面はいくつに分けられるか。』なのですが、、 ●「3本以上のどの直線も1点で交わらないとき」とはどのような状態を指しているのでしょうか?? というのと、 ●そしてもし仮に、私が想像する、直線が同士が交わる交点が1点だけにならないということであれば、3本目の直線は交点が一つになるように引くのと(これはダメ×)、2点になるようにひくの2通りだけですが、4本目からは、交点1つ(これはダメ)のほか、交点2つ、交点3つと後者二つは可能性があり、どちらをとるかで平面の数は変わってくるように思うのですが、どの部分の考え方を修正したらよいでしょうか??