• ベストアンサー

数学的帰納法の証明で・・・

問題の解答は以下のようになるそうですが、(★)より下の計算でなぜ A(k+1)-((k+1)+1)≧0 と証明できるのかわかりません。。お願いします。 (一般項 A(n) とします) A(n+1) = (An)^2 - A(n) + 1 (n≧2) が成り立っています。 また、 A(1)=2 です(使わないと思いますが念のため) n≧2 のとき、A(n)≧n+1 を証明します。 (1) n=2 のとき 省略 (2) A(k)≧k+1 が成り立つと仮定する。 A(k+1)-((k+1)+1) =(Ak)^2 - A(k) + 1 -(k+2) (題意より) =(A(k)- 1/2 )^2 + 3/4 - (k+2)  (平方完成)(★) =(k+1- 1/2)^2+ 3/4 -(k+2) =(k+1)^2-(k+1)+1-(k+2) =(k+1)(k-1) ≧0 となり、n=k+1 のときも成り立つ。

質問者が選んだベストアンサー

  • ベストアンサー
  • fukuda-h
  • ベストアンサー率47% (91/193)
回答No.1

=(A(k)- 1/2 )^2 + 3/4 - (k+2)  (平方完成)(★) ここで仮定を使ってA(k)≧k+1を代入すると ≧(k+1- 1/2)^2+ 3/4 -(k+2)・・・ここは≧です。 k+1はそのまま一つにして(k+1- 1/2)^2を展開する =(k+1)^2-(k+1)+1-(k+2) =k^2+2k+1-k-1+1-k-2 =k^2-1 (ここで、n≧2 のときを考えているのでk≧2はあたりまえ) =(k+1)(k-1) ≧0

koutya7
質問者

お礼

よく分かりました! ありがとうございました。

その他の回答 (1)

noname#108210
noname#108210
回答No.2

証明に一部ミスがあります。 =(A(k)- 1/2 )^2 + 3/4 - (k+2)  (平方完成)(★) =(k+1- 1/2)^2+ 3/4 -(k+2) =(k+1)^2-(k+1)+1-(k+2) 1行目から2行目は等号ではなく,不等号「≧」でなければ なりません。そして,ここでは,コメントが必要です。 「A(k)が放物線の対称軸の右側で単調増加の部分にあること」を断ります。 =(A(k)- 1/2 )^2 + 3/4 - (k+2) 帰納法の仮定から,A(k)>1/2 なので   (上式)≧(k+1- 1/2)^2+ 3/4 -(k+2)     =(k+1)^2-(k+1)+1-(k+2) この部分は,次のようにすることもできます。 帰納法の仮定から A(k)≧k+1 なので A(k)-(1/2)≧k+(1/2) これから {A(k)-(1/2)}^2≧{k+(1/2)}^2 したがって (A(k)- 1/2 )^2 + 3/4 - (k+2)  ≧{{k+(1/2)}^2 + 3/4 - (k+2)  =k^2-1 ≧0

koutya7
質問者

お礼

回答ありがとうございました。 助かりました!

関連するQ&A

  • 数学的帰納法

    数列anを a1=1, a2=1, an=an-2+an-1(n=3,4,5) で定義する。 このとき、すべての正の整数に対して次の不等式が成り立つことを数学的帰納法を用いて証明せよ。 という問題で 解答では n=1,2のとき成り立つことを示して n=k,k+1のとき成り立つと仮定して n=k+2のとき成り立つことを示す と書いてあるのですが、 n=1のとき成り立つ、 n=kのとき成り立つと仮定、 n=k+1のとき成り立つ にしないのはなぜですか? 教えてください お願いします!!m(_ _)m

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法

    a1 = 2 ,  a(n+1) = 1/2 an + 1/an ( n = 1 , 2 , 3 ,...) すべての自然数nについて、an ≧ √2 が成り立つことを数学的帰納法で示せ よって ak+1 ≧ √2 が成り立ち、n = k + 1 の時も与えられた命題は成り立つことがわかる 以上より、全ての自然数nで an ≧ √2 が成立する。 これのよってより前の部分がわからなくなってしまいました。 よってにつながるように解き方を教えてください、お願いします。

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 数学の問題でわからないところがあります。

    どなたか教えてください。 等差数列{an}があり、a2=14、a3-a7=12を満たしている。 (1)数列{an}の初項aと交差dを求めよ。また、一般項anをnを用いて表せ。 (2) 20                Σakの値を求めよ。   k=1 また、 20 Σ|ak|の値を求めよ。 k=1      (3)n≧10とする。 n Σ(|ak|-ak)をnを用いて表せ。 k=1 見にくくてすみません。 よろしくお願いいたします。

  • 数学的帰納法の問題です。

    数列{an}が、a1=1/2 a2=1/6 [an+a(n+1)+a(n+2)]/3=1/[n(n+3)] を満たしている。 (1)a3 ,a4を求めよ。 (2)anを推定し、それが正しいことを数学的帰納法を用いて証明せよ。 上のような問題に出くわし、困っています…。 (1)は、私の計算が正しければ、 a3=1/12 ,a4=1/20 となり、 一般項は、an=1/[n^2+n] と推定できると思うのです…が、どう証明をしていいのかが分かりません。 読みにくくて申し訳ないですが、どなたか詳しい方、回答お願いします。

  • 数学的帰納法

    nは自然数とする。5^(n+1) + 6^(2n-1) は31で割り切れることを証明せよ。という問題です。 数学的帰納法でとくと・・・ (1)n=1のとき 5^(n+1) + 6^(2n-1) =5^(1+1) + 6^(2-1) =5^2 + 6 =25+6 =31 となり、成り立っている。 (2)n=kのときも成り立っていると仮定すると 5^(k+1) + 6^(2k-1)となり、これは31の倍数である。 よって5^(k+1) + 6^(2k-1)=31Mとあらわすことができる(M:整数) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5^(k+2) + 6^(2k+1) ここまではわかりました。 この問題はn=k+1のときも31の倍数であることを証明すればいいのですよね? しかし5^(k+2) + 6^(2k+1)から 31{・・・・}となるように持っていくことができませんでした。 (私の考えが違っていたらすいません。) 解答を見たら(n=k+1のときの前までは解答と同じでした。) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5(5^(k+1) + 6^(2k+1)+31・6^2k-1 となっています。 これは31の倍数であるから、n=k+1のときも成り立つ。 (1)(2)より、すべての自然数について命題が成り立つ。 となっていました。 どうやって、5(5^(k+1) + 6^(2k+1)+31・6^2k-1に持っていたのですか? できる限り詳しく教えてください。お願いします。

  • 数学的帰納法

    先日模試があったのですが、自分の解答のどこが誤りなのか分かりません…。 nを正の整数とする。xとyの方程式 3x+4y=n…ア について、次の問に答えよ。 問 kを正の整数とする。n=3k+1のとき、方程式アを満たす0以上の整数x,yが存在することを示せ。 自分の解答↓ 1)n=4のとき ア⇔3x+4y=4 (x,y)=(0,1)はこれを満たすので、このときアを満たす0以上の整数x,yは存在する。 2)n=3k-2(k=2,3,4…)のとき、 アを満たす0以上の整数x,yは存在すると仮定する。 このとき、x=α、y=β(α、βは0以上の整数)とすると、 3α+4β=3k-2…イ が成立する。 このとき、n=3k+1のときでもアを満たす0以上の整数x,yは存在することを示す。 3x+4y=3k+1…ウとする。 ウ-イ 3(x-α)+4(y-β)=3であり、(x-α、y-β)=(1,0)はこれをみたすから、(x,y)=(1+α、β)はウをみたす。 よって、n=3k+1のときでも、アを満たす0以上の整数x,yは存在する。 以上のことから3でわると1余る4以上のすべての自然数nについて、アをみたす0以上の整数x,yは存在することが示された。 よって題意は示された。 と解答したのですが…。 実際解答したときは、かなり急いでいたので、2)→1)のように、 「n=3k-2で成り立つことを仮定」→「n=3k+1で成り立つ」→「n=4のとき成り立つ」というふうに順序が少し変になってしまいました。 採点欄のところには「仮定を用いてるので証明とはいえない」と書かれてしまったのですが、数学的帰納法を用いるなら、仮定を用いるのはふつうではないのでしょうか? 数学的帰納法だと伝わらなかったのでしょうか?? そもそも根本的におかしいのでしょうか?? どなたかお願いします。

  • 数学IIについて質問です

    この問題が解けません。 数列{An}は、条件A1=7、An+1=(An)^3 (n=1,2,3,・・・)によって定められているとする。 nは自然数とするとき、Anを3^nで割ったときの余りが1になることを数学的帰納法によって証明せよ。 僕自身ここまではいけました。 (i)n=1のとき A1=7より A1÷3^1=7÷3=2 余り1 よってn=1のとき成り立つ (ii)n=kのときに成り立つと仮定する このとき、 Ak=3^k×M+1・・・(1) (Mは自然数で(1)の商である) が成り立つことが分かる。 そして n=k+1のとき (1)より Ak+1=3^(k+1)×M+1 この先がどうやって解けばいいか分かりません。 PCを使い慣れていないので、少なからず変な表示のところがあると思いますが よろしくお願いします。

  • 数学的帰納法

    数学的帰納法の、証明の過程において、よくわからないところがあります。回答よろしくお願いします。 例えば、次のような問題。 「nが5以上の自然数のとき、2^n>n^2(・・・A)を証明せよ。」 (1)n=5のときAは成り立つ。 (2)kを5以上の自然数として、n=kのときAが成り立つと仮定すると、n=k+1のときにAが成り立つ。 (1)、(2)より与命題は証明できた。 この証明では、2^k>k^2を用いて、ちょっと計算をすることによって2^(k+1)>(k+1)^2を導いて、n=k+1のときにAが成り立つことを言いますよね。でも僕は、5以上の全ての自然数kについて2^k>k^2を仮定した時点で、何の計算も必要なしに2^(k+1)>(k+1)^2が言えると思います。なぜなら、例えばk=5とすると、k+1=6となりますが、kに当てはまる値の条件と2^k>k^2より、2^6>6^2も言える、つまり、k+1に当てはまる数はすべてkに当てはまるからです。 僕の考えの間違いを教えてください。