• 締切済み

ピタゴラス数に必ず素数が含まれるかについて

(1)互いに素である3つの自然数が直角三角形の3辺の長さとなっているとき、素数が少なくとも1つは含まれるような気がします。3・4・5、5・12・13、7・24・25、8・15・17、9・40・41等々・・・真でければ証明を、偽であれば反例を与えることが出来る方がいらっしゃいましたら、お教えください。移項して因数分解したりしましたがうまくいきません。 (2)重心と外心が一致する三角形は正三角形であることを示せる方がいらっしゃいましたら、その方法(概説でも結構です。)をお教えください。 実は明後日が大学入試試験です。もし都合が良いようでしたら、なるべく早く御回答いただけるようお願いいたします。

  • Xtend
  • お礼率30% (4/13)

みんなの回答

回答No.4

もっと簡単にしょう、と思ったら w >いろんな方法が考えられるが、A(a、b)、B(0、0)、C(c、0)として座標を使えば簡単に行く。 A(a、b)、B(0、0)、C(2、0)としてやれば良い。 BとCを固定しておいて、Aだけ動かしてやれば良い。それで、一般性を失う事はない。 他では、ベクトルも考えられるが、試してみて。

  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.3

(1)は#1さんの反例で終わってしまったので(2)だけ解説すると まあ、パッと思いつくのは座標ですが図形的にやると △ABCの重心(外心)をGとし 重心→AGは~の二等分線 外心→AG⊥~ とかやって、相似を使う手があります

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

3・4・5 が直角三角形なら、 6・8・10 も直角三角形。 素数が含まれるって…?

回答No.1

>(1)互いに素である3つの自然数が直角三角形の3辺の長さとなっているとき、素数が少なくとも1つは含まれるような気がします。 駄目みたいね、下のURLに君の質問の反例がある。 http://mathmuse.sci.ibaraki.ac.jp/naosuke/pynumber.html >(2)重心と外心が一致する三角形は正三角形であることを示せる方がいらっしゃいましたら、その方法(概説でも結構です。)をお教えください。 いろんな方法が考えられるが、A(a、b)、B(0、0)、C(c、0)として座標を使えば簡単に行く。 自分で、やってみて。

関連するQ&A

  • 小学生がピタゴラスの定理を体感する試みとして

    友人が言っているのですが、紙に直角三角形を買いて、三辺を物差しで実測させ、ピタゴラスの定理と同じ操作で計算させ、確認させればピタゴラスの定理が成立することを納得させられないかということです。実測値を使って計算すれば答えが一致するはずはありませんが、測定する直角三角形の数を増やしていけば納得する子もいるでしょうか。何か盲点のようなものがあるのではないかと思います。自分で実際やってみても、あまり実感できません。

  • 三角形のフェルマー点と重心が一致すれば正三角形か?

    三角形ABCには、五心と呼ばれる点があります。傍心を除外した、 重心。垂心。外心。内心。 のうち勝手な二点が一致すれば、三角形ABCは正三角形であることが、少し考えれば分かると思います。 そこでフェルマー点というのを考えます。 フェルマー点とは、△ABC内の点Pのうち、 ∠APB = ∠BPC = ∠CPA = 120° となる点をいいます。 僕が調べたところ、 フェルマー点と垂心が一致すれば、三角形ABCは正三角形であることが分かりました。 フェルマー点と外心、フェルマー点と内心についても同様でした。 しかし、フェルマー点と重心が一致すればどのような三角形か、という問題を考えたとき、行き詰ってしまいました。 それも正三角形であることが証明できるのでしょうか?また、正三角形でない反例があるのでしょうか? さらに、ジェルゴンヌ点とかネーゲル点とかナポレオン点とかも考えたとき、なにか成立することはあるのでしょうか? なお、詳しい性質と図においては、 http://www.geocities.jp/osaqmath/j3-2.html を見ていただければ分かりやすいと思います。

  • 外心と内心が一致する四面体について

    タイトルにあるように四面体ABCDにおいて、外心Oと内心Iが一致しているとします。 そのような四面体の4つの面の外接円の半径は等しいということを証明してください。 また、四面体ABCDはどのような四面体か(等面四面体か直辺四面体か三直角四面体か正四面体か...)ということを教えてください(答えるにあたって途中経過も)。 備考: 等面四面体  …3組の向かい合う辺の長さはすべて等しい。つまり4つの面はすべて合同。 直辺四面体  …3組の向かい合う辺がすべて垂直である。 三直角四面体 …一つの頂点に三つの直角の面が集まっている。            つまり四面体OABCにおいて∠BOC=∠COA=∠AOB=90° 

  • 重心の証明問題。

    △ABCの辺BCの中点をNとして、直線AMに辺BCからそれぞれ垂線BD、CEをひく。 このとき、辺Dが△ABCの重心に一致して、 且つAD=√2BDとなる。 このとき、4点A,B,E,Cが同一の円周上にあることを証明しなさい。 重心の問題ですから、 ○AD:DN=2:1 また問題文から、 ○AD=√2BDを使用することは何となく分かりますが、この後が分かりません。 四点が同一の円周上にあることを・・ということは 外心も関わってくるのかと思っているのですが。 重心の問題はいつもつまづいてしまいます。 分かる方いましたら、どうか教えてください。

  • 最大公約数について

    「a,b,c,rが正の整数で、a=rb+cであるとき、a,bの最大公約数とb,cの最大公約数は一致することを証明せよ。」 という問題の解答の出だしが、 「aとbの最大公約数をm、bとcの最大公約数をnとおくと a=mA, b=mB(AとBは互いに素な整数) b=nB',c=nC(B'とCは互いに素な整数) と書ける」 となっているのですが、なぜこう書けるのかわかりません。 「a=mA, b=mB」「b=nB',c=nC」とかけるのはわかりますが、なぜAとB,B'とCが互いに素と言えるのかわかりません。 思いつく反例を上げると、a,b,cは異なる数とは問題文に書かれていないので、もしaとbが同じ数だとしたらA=Bとなり互いに素ではありませんよね?

  • 余りと、余りの2乗の余りが一致する個数

    まず、自然数Nで割ります。 すると、その余りは0~N-1までのN通りあります。 次に、その余りを二乗します。 そして、それぞれを再びNで割ります。 そのとき、余りが、前の余りと同じになる個数が2のM乗あります。 そのMは自然数Nを素因数分解したときの素数の種類の個数と一致します。 例えばN=10(=2×5)のときは二つの余りが一致するのは0、1、5、6の、4個存在します。これはNの素数の種類が2と5であるため、2の2乗と一致します。 しかし、なぜこのようなことがいえるのか、わかりません。また、もしかしたら、これはすべてにおいてはいえないかもしれません。 ですから、この証明、もしくは反例を教えていただけたらと思います。

  • cos(有理数*π)=有理数、などについてお尋ね(長文)

    先日、「cos(有理数*2π)=有理数となるのはどういったときか」 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683 という質問に、親切なご回答を頂きました(感謝です)。 結果だけをまとめますと、 「mとnを互いに素な自然数とする。 cos{(m/n)π}が有理数となる⇔n=1,2,3 sin{(m/n)π}が有理数となる⇔n=1,2,6 tan{(m/n)π}が有理数となる⇔n=1,2」 ここで、新たに疑問が浮かびます。 http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/math_prob_analy.htm の問題177で、 「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」 がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。 (僕が考えた証明、多分不備あり。) tan(aπ)が有理数とすると、 tan(aπ)=y/x(x,yは互いに素な自然数)とかける。 Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、 arg(x+iy)=aπ 有理数a=p/qとして、Gaussの整数x+iyをq乗すると、 arg(x+iy)^q=aπ*q=pπ つまり、 (x+iy)^q=実数 http://members.ld.infoseek.co.jp/aozora_m/suuronN/node57.html に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。 右辺が奇素数を因数に持つとき、上記サイトの定理40より、 それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。 右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、 それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。 このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。 この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。 これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか?

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 互いに素

     a、b を自然数とする。   a と b が互いに素 ⇒ a と a+2b は互いに素  これは当てずっぽうでもすぐ反例(a=2, b=1)が見つかりますが、上の命題が偽であることをきちんと証明するにはどうしたらいいのでしょう?  a と a+2b の最大公約数を g とすると、整数 p、q を用いて   a = pg, a+2b = qg とおけるので a を消去すると   2b = g(q-p)   g = 2b/(q-p)  ここで g が 1 でないような b、p、q の組が無数にあることを示せばいいのだと思うのですが、その方法がわかりません。

  • 数と式(整数問題)の入試の出題範囲について

    高校数学の学習内容(数と式、整数問題)と大学入試の出題範囲についての質問です。 高校の授業では、「式の計算」「式の証明」「因数分解」「方程式と不等式」「複素数と方程式」などを習いますが、大学受験の問題には、不定方程式や倍数に関する問題などがよく出ています。私には、学校で習う範囲の問題と思えないのですが、基礎的なレベルから入試レベルの整数問題が解けるようになるまでの間に何があるのかわかりません。何をどのように勉強すればいいのかわかりません。難しい問題の解答の解説を読んでも理解できないです。基礎固めはできていますが、高校レベルの勉強だけしているようでは入試には通用しないのですか? 相談内容をうまく説明できなくて申し訳ありませんが、どなたかアドバイスお願いします。