• 締切済み

線積分

原点を中心とする半径1の円に反時計回りに向き付けを与えた閉曲線をcとするとき、次の線積分を求めよ。 ∫c (x^2+y^2)dx + xydy という問題なのですが、x=cosθ,y=sinθ,0≦θ<2πと置き、積分を進めていくと、 ∫ (cosθ)'+sinθcosθ(sinθ)' dθ =0+1/2∫(cos2θsinθ+sinθ)dθ =0 になってしまったのですが、答えは0にはならないですよね?どこが違うか教えてください。お願いします。

みんなの回答

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.3

> 答えは0にはならないですよね? と思った理由に興味を惹かれます。 よかったら、補足に書いてください。

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

#1さんの言われるとおり =0になりますよ。 変数変換で、被積分関数が周期2πの周期関数になり、平均値=0ですから、 一周期に渡って積分すればゼロになることは明らかです。

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

宜しいのではと思います。 当方も計算したら0になりました。 -∫(0~2π)(sinθ)^3dθの計算となって結果0でした。

関連するQ&A

  • Greenの定理

    原点を中心とする半径1の円に反時計回りに向き付けを与えた閉曲線をcとするとき、次の線積分を求めよ。 ∫c (x^2+y^2)dx + xydy という問題なのですが、Greenの定理を使うと、 ∬ dxy/dx + d(x^2+y^2)/dy =∬ y-2y dxdy =-∬y dxdy となるのですが、この先の答えの出し方が分かりません。どなたか教えてください。お願いします。

  • 線積分の問題

    Cを放物線y^2=2(x+2)と直線x=2の各々の一部からなる閉曲線とするとき、線積分 ∫c(-y/x^2+y^2)dx+(x/x^2+y^2)dyの値を求めよという問題です。 これを解きたいのですが、この範囲の内容は、教科書に載っておらず、先生が板書と口頭で説明したため、理解できていません。 原点を中心とした半径1の円周にそう積分に帰着させるとよいそうなのですが・・・ ネットで調べてはみたのですが、まず、「y^2=2(x+2)と直線x=2の各々の一部からなる閉曲線」これをどのように活用していけばよいのかすら分かりません。 線積分の考え方が分かる方、ご指南宜しくお願いします。

  • 線積分の問題

    P=(1,0)を始点、Q=(-1,0)を終点とする曲線Cを次のように取る時それぞれの線積分     ∫_c{(x^2+y^2)dx+xdy} の値を求めよ。 (1)Cは原点中心、半径1の上半円 この問題ですが、x=cosθ y=sinθ として解いたのですが、答えがπ/2-2になるのです。回答を見るとπ/2とかいてあるのですが。やはりπ/2なのでしょうか? また、次は重積分なのですが 球x^2+y^2+z^2≦a^2と円柱x^2+y^2≦axの共通部分の体積を求めるとき、自分はV=2∬_D (a^2-x^2-y^2)dxdy D={(x、y)|x^2+y^2≦ax}として解いたのですが、答えが違うのです。自分は2πa^3/3となるのですが。解答は、2/3(π―4/3)a^3なのです。 きちんと、曲座標に直して解いたのですが。解答は(5)=4∬_D(a^2-x^2-y^2)dxdy  D={(x、y)|y≧0,x^2+y^2≦ax}として解いていました。 解説お願いします。

  • 線積分についての質問です

    線積分の問題が分かりません… f(x,y)=-y/(x^2+y^2) g(x,y)=x/(x^2+y^2) であるとき、原点Oを中心とする半径aの円Cに沿った次の線積分をもとめよ ∫c(f(x,y)dx+g(x.y)dy) お力添えお願いいたします

  • 久しぶりの線積分に苦戦

    D={(X,Y)|0≤x≤1、0≤y≤π}の境界(反時計回り)をC1とする。 線積分 ∮[C1](sin(xy)dx + x cos y dy) を計算せよ。 すでに、大学を出て20年、積分は望郷の彼方に飛んで行ってしまいました。 計算方法を教えていただけないでしょうか。

  • 線積分の問題

    線積分の問題がどうしても解けません。詳しい方いらっしゃいましたら、ご助言宜しくお願いします。 (1)∫c y^2 dx + x^2 dy C: x=cost y=sint (t: 0→π) そのまま代入して計算し、∫0→π -sint^3 + cost^3 dt という部分まで辿り着いたのですが、この先が計算できません。 やり方が違うのでしょうか。 (2)∫c (e^x + y)dx + (y^4 + x^3)dy (Cは単位円の周を時計の逆回りに1周したもの) グリーンの定理で重積分に帰着し、∬D 3x - 1 dxdy とまで来たのですが、cos sinを使って範囲設定するとよく分からなくなってしまいました。

  • 線積分について

    線積分というものがよくわかりません。 線積分というのはxとyについての二十積分なのでしょうか? 以下の問題について考えていたのですが、どうやればいいのでしょうか? ∫_c ( ye^(xy)dx + xe^(xy)dy ) cは(1,1)→(2,2)にへの増加する曲線

  • 平面スカラー場の線積分について

     x-y 平面上の領域 D で関数 f(x,y) が定義され、D 内にある平面曲線 C を   x = x(t), y = y(t) (a ≦ t ≦ b) ・・・・・・・ (#0) で表わすとき、この「曲線 C に沿った線積分」を線素   ds = √(dx^2 + dy^2) = √( (dx/dt)^2 + (dy/dt)^2 ) dt を使って   ∫_C f(x,y) ds   = ∫[a,b] f( x(t),y(t) ) √( (dx/dt)^2 + (dy/dt)^2 ) dt ・・・・・・・ (#1) と定義する。  (#1)が「曲線 C に沿ってできる」x-y 平面に垂直なカーテン状の曲面の面積を表すことはわかりやすいのですが、ちょっとわかりにくいのが「曲線 C に沿ってできる x に関する」線積分   ∫_C f(x,y) dx = ∫[a,b] f( x(t),y(t) ) dx/dt dt ・・・・・・・ (#2) の定義です。もし、(#0) の曲線 C の y と x が一対一に対応していたら、(#2) の線積分は (#1) の曲面を x-z 平面に投影した図形の面積を表すと解釈してよいのでしょうか。  ベクトル解析の参考書を2冊持っているのですが、そんな説明はどちらの参考書にもないので心配なのです(笑)。

  • 線積分

    線積分についてわからないところがあるので、教えてください。 XY平面状で原点Oから点A(1,1,0)に至る曲線y=x^3及び、 OからB(1,1,0)を経てAに至る折れ線に関するA→=xyi→+xj→の線積分を求めよ という問題なのですが、 線積分の定義により、∫A→・dlなので、 A→・dl=(xyi+xj)・(dxi+dyj+dzk)で=xydx+xdy となりますよね? ここでdy=3x^2dxなので、 上式=x^4dx+3x^3dxとなりますよね? でも、未だに線積分の積分区間が良く理解できないので、 ここで行き詰ってしまいます。 このあとはどうすればよいのでしょうか? あと、折れ線のほうはどうすれば良いのでしょうか?

  • 積分に詳しい方よろしくお願いします。

    積分に詳しい方よろしくお願いします。 ベクトル関数をf=x^3 x^+x^2y y^ とする。x^、 y^ はそれぞれx、y方向の単位ベクトルである。次の積分を求めよ。 (分りにくくて申し訳ないのですが x^3 、 x^2y の ^ はそれぞれ三乗、二乗を表しています。) (a) ∫c f・n ds ただしcは原点を中心とする半径aの円である。nは円周上での法線ベクトルであり(すなわちn=cosθx^+sinθy^)、dsは円周上の微小線分すなわちds=adθである。 (b) ∬s ∇ ・ f dxdy ただしsは原点を中心とする半径aの円の内部である。 (a)線積分、(b) 面積分 が等しいことがガウスの定理の2次元版である。 という問題です。 お時間ある方よろしくお願いします。