• ベストアンサー

高校数学の問題

よろしくお願いいたします<(__)> 3つのハコABCがあり、それぞれ異なる数のボールが入っている。ボール数はAが最も多く、Cがもっとも少ない。3つのボールの数を足すと54になり、Bの箱のボールの2倍とCの箱のボールの3倍を足すと、Aの箱のボール数の2倍になる。 : 3つの箱のボールの数を求めよ。答えが複数ある場合、Aのはこのボール数が最も多い組み合わせを答えよ x+y+z=54     (1) 2y+3z=2x     (2) ( 2)を展開 X=Y+3/2Z これを(1)に代入 y=54-5/2Z これを(2)に代入 X=54-Z ここで式2つが揃って y=54-5/2Z  (3) X=54-Z    (4) (3)からZ<21が導かれる Z=20 これを(3)(4)に代入し x=34 Y=4 Z=20 でも「Aの箱のボールがもっとも多く、Cの箱のボールがもっとも小さい」はどうしたらいいのか分かりません。 なおかつ、最初の展開(3)でy=で計算したばあい x+y+z=54 2y+3z=2x x=54-y-z 2y+3z=2(54-y-z) 4y+5z=108 y=27-5/4z x+27-5/4z+z=54 x+27-1/4z=54 x=27+1/4z y=27-5/4z 0=27-5/4z Z<108/5=21.6 従って,箱Aのボール数が最も多い組み合わせはx=32,y=2,z=20のときである. となって数値まで違うものが出てしまう。 何が間違えているのか、どうやればAの箱のボールがもっとも多く、Cの箱のボールがもっとも小さい」が解決できるのか分かりません。 どうぞご教授よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • take_5
  • ベストアンサー率30% (149/488)
回答No.1

答えだけ書いとくから、どこが違うかは自分でチェックしてね。。。笑 Aの箱のボールの数をx、Bの箱のボールの数をy、Cの箱のボールの数をzとする。 条件より、x+y+z=54、2y+3z=2xであるから、zを消去すると、5x+y=162。‥‥(1) 従って、この不定方程式を解くと良い。 (1)を満たすxとyの特別解を各々α、βとすると、5α+β=162 ‥‥(2) (1)-(2)より、5(x-α)=(β-y)となるが、5と1は互いに素であるから、mを整数として、x-α=m、β-y=5mと ‥‥(3)と表せる。 ここで、特別解αとβの1例を求めると、(α、β)=(30、12)であるから、(3)より x=m+30、y=12-5m、となるが z=54-x-y=4m+12. mは整数で、x>y>z>0 (0は除いたほうが自然と判断する)であるから、-2≦m≦2. xの値がそれ自身最大で、zがx>y>zになるのは、m=-1の時、即ち、(x、y、z)=(29、17、8)

その他の回答 (1)

  • agthree
  • ベストアンサー率72% (233/323)
回答No.2

まず、前半の考え方ですが、 >これを(1)に代入 >y=54-5/2Z の部分で計算ミスがあります。(1)に代入すると、 2y=54-5/2z となるので、結局後半と同じ式、 x=27+1/4z y=27-5/4z が導かれます。 x,y,zが正という条件を使って、 y>0より Z<108/5=21.6 を出されていると思いますが、その他にも条件があるので、それを組み合わせればよいですね。 ご質問の 「Aの箱のボールがもっとも多く、Cの箱のボールがもっとも少ない」 ですが、Cの箱のボールがもっとも少ないということは、Cの箱のボールはBの箱のボールよりも少ないということですから、 y>z が成り立ちます。つまり、 y=27-5/4z>z です。 また、Aの箱のボールがもっとも多くということより、 x=27+1/4z なので、zは与えられた条件下で大きければ大きいほどよいということになります。 また、x,y,zともボールの数ですから整数ということになります。xやyの式よりx,yが整数となるためにはzは4の倍数ということになります。 これらの条件を使ってやってみて下さい。 なお、今回は省略されたのだと思いますが、実際の解答では「A,B,Cの箱のボールの数をx,y,zとする」のような説明をお忘れなく。

関連するQ&A

  • 5-8 高校数学 場合の数

    nを正の整数とし,n個のボールを3つの箱に分けて入れる問題を考える、ただし1個のボールも入らない箱があってもよいとする 以下に述べる4つの場合について、それぞれ相異なる入れ方の総数を求めたい (1)1からnまで異なる番号のついたn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (2)互いに区別のつかないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (3)1からnまで異なる番号のついたn個のボールを区別のつかない3つの箱に入れる場合その入れ方は全部で何通りあるか (4)nが6の倍数6mであるときn個の互いに区別のつかないボールを区別のつかない3つの箱に入れる場合その入れ方は何通りあるか 解説(1)は3^n通り (2)は[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように三分割する n個とも1箱だけにいれるもの・・・x通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では 3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがって x×3+(y+z)×6=3^nよって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6={3^(n-1)+1}/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)としa=b=cをみたすもの・・p通り a=b<c or a<b=cをみたすもの・・q通り a<b<cをみたすもの・・r通り すると(2)の場合の数はp+3q+6r通りと数えられるからp+3q+6r=(n^2+3n+2)/2・・・(2) ここでp=1であり、またq通りは(0,0,6m),(1,1,6m-2),・・・、(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通り を除いてq=3mである  よって(2)からr=1/6×{(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り とあるのですが (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません

  • 5-8 高校数学 場合の数

    nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える ただし1個のボールも入らない箱があってもよいものとする 以下に述べる4つの場合についてそれぞれ相異なる入とれ方の総数を求めたい (1)1からnまで異なる番号の付いたn個のボールをA,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか (2)互いに区別の付かないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は全部で何通りあるか (3)1からnまで異なる番号の付いたn個のボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (4)nが6の倍数6mであるとき、n個の互いに区別の付かないボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (解説) (1)3^n (2)A,B,Cにそれぞれa,b,c個入るとしてa+b+c=n(a>=0,b>=0,c>=0)(1) をみたす整数解(a,b,c)の個数を求めればよいが、(1)は(a+1)+(b+1)+(c+1)=n+3 (a+1>=1,b+1>=1,c+1>=1) と同値であることに着目して[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように3分割する nことも1箱だけに入れるもの...x通り n個を2箱に分散して入れるもの...y通り n個を3箱に分散して入れるもの...z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがってx×3+(y+z)×6=3^n(x=1) よって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6=(3^(n-1)+1)/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)とし(3)と同様に求める場合の数を次のように3分割する a=b=cをみたすもの...p通り a=b<c or a<b=cをみたすもの...q通り a<b<cをみたすもの...r通り すると(2)の場合の数はp+3q+6r通りと数えられるから p+3q+6r=(n^2+3n+2)/2(2) ここでp=1であり、またq通りは(0,0,6m)(1,1,6m-2)....(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通りを除いてq=3mである、よって(2)から r=1/6×{1/2×(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り の (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません を質問したら (3) n個とも1箱だけにいれるもの・・・x通り これが(1)の数え方なら3通りあり、(3)の形では1通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り yとzの数は同じ考え方で計算できるという意味で同じです。 例(6,2,1)(6,1,2)(1,6,2)(1,2,6)(2,6,1)(2,1,6) は全て同じものとして考えられますが、同様にして (6,3,0)(6,0,3)(0,6,3)(0,3,6)(3,6,0)(3,0,6) となりこの両者は同じものです。この両者は同じですから分けて考えるのではなく、同じものとして(y+z)を求めた方が楽 xとy,zの違いは一番多く入った箱以外の二つの箱を区別するかどうかだけです。 便宜的に箱をABCと名前をつけると、(1)の結果から3^n通あり ここからどれか一つの箱にだけ入っている場合の3通りを引くと(3^n-3)になります。この箱の名前を付け替えるとすればA→3通り、B→2通り、Cは残り、と3!通りあるはずです。 したがって、x+y+z = 1 + (3^n-3)÷3! (4) まずa=b=c の時は1通りしかないのは問題ないでしょう。このとき、a=b=c=2mです。次にa=b<c or a<b=cをみたすもの・・q通り ですが、a=bのとき、a<cなのでaは0から2m-1までの2m通り、同様にb=cのときはbは2m+1から3mまでのm通りあるはずです。 a<b<cをみたすもの・・r通り a<b<cから、aは0~2m-1までの2m通りあるはずです。aとbが決まればcも決まるという関係上、aとbだけを考えればよいです ここでaが奇数のときはm通りあり a=2m-1の時、b+c=4m+1からbは2mの1通り a=2m-3の時、b+c=4m+3からbは2m-2~2m+1の4通り ・・・ a=1の時、b+c=6m-1からbは2~3m-1の(3m-2)通り よりΣ(3m-2)=3m(m+1)/2-2m通り 偶数のときも同様にm通りあり、(b=cとなるときを除外しなければならないのに注意) a=2m-2の時、b+c=4m+2からbは2m-1~2mの2通り a=2m-4の時、b+c=4m+4からbは2m-3~2m+1の5通り ・・・ a=0の時、b+c=6mからbは1~3m-1の(3m-1)通り よりΣ(3m-1)=3m(m+1)/2-m通り よって 3m(m+1)/2-2m + 3m(m+1)/2-m と回答して下さったのですが (3)でyとzが同じとあるのですが例えばn=6の時 箱が空の時(3,3,0),(3,0,3),(0,3,3)とあり箱に入る球がすべて違うとき(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)となり異なるのではないですか?同じと言うのが何故同じなのか分かりません 仮に(y+z)を求めるとして、 (3^n-3)になるのも分からないです (4)は偶数と奇数で分ける所ですが偶数だとb=cの場合があるから分ける必要があるとあるのですがb=cになると何故駄目なのでしょうか?

  • 数学の整数の問題で分からないことがあります。

    最大公約数が1である整数a,b,cはa^2+b^2=c^2を満たしている。 このとき、a,bのうち、一方が偶数であり、一方が奇数であることを 示せ。 まず2で割り切れるか割り切れないかということで、 a=2s+x,b=2t+y,c=2u+z(s,t,uは整数 x,y,z:0か1) とおいてa^2+b^2=c^2に代入してその結果が 2(2s^2+2sx+2t^2+2ty)+(x^2+y^2)=2(2u^2+2uz)+z^2・・・(1)となり、 この式から[x^2+y^2を2で割った余り]=[z^2を2で割った余り]となる。 解答ではここから更に(1)を 4(s^2+sx+t^2+ty)+(x^2+y^2)=4(u^2+uz)+z^2とし、 [x^2+y^2を4で割った余り]=[z^2を4で割った余り]として z=0の場合とz=1のときの場合分けで示しているのですが、 [x^2+y^2を2で割った余り]=[z^2を2で割った余り]の段階で z=0の場合とz=1のときの場合分けを使って考えてはいけないのは 何の不都合があるのでしょうか?

  • 高校数学

    3番の問題なんですけど、これc=X+y−2Zにして、a+b-c=0より、ですると、結果3abcになるんですがcの条件が違うので答えが変わってしまいます。 どこが間違えているのか教えてください。

  • 3けたの自然数を求める問題で、途中式が不明な点がありましたのでお聞きします。

    3けたの自然数がある。この自然数の数字を逆に並べた自然数は、もとの数より495大きい。また、この自然数の各位の数字の和は17で、百の位の数字の2倍と十の位の数の3倍との和は、一の位の数の3倍に等しい。はじめの数を求めなさい。 元の数を100X+10y+Z 逆の自然数を100Z+10y+X とおく。 100Z+10y+X=100X+10y+Z+495 (自然数の数字を逆に並べた自然数は、もとの数より495大きい) -99X+99Z=495(-99で割り、数字を小さくしました) X-Z=-5 (1)とする X+Y+Z=17 (2)とする 2X+3Y=3Z (3)とする (1)のX-Z=-5をX=Z-5に変形して(2)(3)に代入します。 (2)(Z-5)+Y+Z=17       2Z+Y=22 (A)とおく (3)2( Z-5)+3Y =3Z 2Z-10+3Y-3Z=0    -Z+3Y-10=0 (B)とおく ※(B)の計算の答えですが正しくは、こちらが正解ではないでしょうか?また、なぜ上の(3)の右辺に0がくるのか判りません。 (3)2( Z-5)+3Y =3Z    2Z+3Y-3Z=10       -Z+3Y=10(B)これが正解ではないでしょうか? 続きます・・・ (A)(B)より   2Z+Y=22 (A)  -Z+3Y=10 (B)×2倍     2Z+Y=22 (A) +)-2Z+6Y=20 (B) ―――――――――――       7Y=42        Y=6    Y=6を(A)に代入 よって2Z+6=22      2Z=16       Z=8 Z=8を(2)(Z-5)に代入します。 X=8-5=3 答え368 以上です。 分かりにくいところもあると思いますが、よろしくお願いいたします。

  • 数学(ベクトル)の問題

    http://okwave.jp/qa/q8011470.html より、 L^2=(x2+sv2x-x1+tv1x)^2+(y2+sv2y-y1+tv1y)^2+(z2+sv2z-z1+tv1z)^2 (簡単のため) L^2=(x2+s*a2-x1+t*a1)^2+(y2+s*b2-y1+t*b1)^2+(z2+s*c2-z1+t*c1)^2 (各方向ベクトルをa,b,cと変えました。) について、 「まず、右辺の括弧を展開して、s の二次式として 平方完成しましょう。 そのとき、t も係数の一部と考えます。 すると、定数項が t の二次式になるので、 今度はそれを t の式として平方完成します。」 という回答が来たのですが、現在、展開すら出来ない状態です。 また、この後の計算もよく分からないです。 申し訳ありませんが、 至急、回答お願いします。

  • 高校数学 式の証明

    説いている途中で分からなくなりました。 模範解答が省略されているため、 できれば考え方・途中式などあまり省略せずお願いできたらと思います。 ご解説をお願いいたします。 問題1 Q1、 3(ab+bc+ca)=abc a+b+c=3 のとき、 a,b,cのうち少なくともひとつは3に等しいことを証明せよ。 →「少なくともひとつは~の文から、(a-3)(b-3)(c-3)=0の形を作ればいい」ということは判りました。 問題2 x+y+z=a , x^3 + Y^3 + z^3 = a^3 のとき (x+Y)a^2 -a (x+y)^2 +xy(x+y)=0 が成り立つことを証明せよ。 そして、x,y,zのうち、少なくともひとつはaに等しいことを証明せよ。 →「少なくともひとつは~の文から、(x-a)(Y-a)(z-a)=0の形を作ればいい」ということは判りました。 問題3 (x+y)/z = (y+z)/x = (z+x)/y   のとき、この式の値を求めよ。 →(x+y)/z = K とおくことはわかりました。 解答である、「2」は出ましたが、もうひとつの解である「-1」がだせません。 問題4 1/a + 1/b +1/c = 1/(a+b+c)  のとき、次の証明をせよ。 ・(a+b)(b+c)(c+a)=0 ・n が奇数のとき  a^-1 + b^-1 + c^-1 = ( 1/a + 1/b +1/c )^n 問題4に至っては、全く何もわかりませんでした。悔しいです。 よろしくお願いします。

  • 高校数学の問題です。

    問 x,y,zは実数であるとする。 (1)不等式 3(x^2+y^2+z^2)≧(x+y+z)^2 が成り立つことを示せ。等号が成り立つ場合も調べよ。 (2)x,y,zがx^2+y^2+z^2=x+y+zを満たすとき、 不等式 -1/8≦xy+yz+zx≦3 が成り立つことを示せ。 (1)は証明できました。 (2)の解説は以下のように参考書に載っていました。 (解説)x+y+z=tとおくと、x^2+y^2+z^2=x+y+zから、 xy+yz+zx=(t^2-t)/2 となるので、 まずtがとりうる値の範囲を調べる。 x^2+y^2+z^2=x+y+z=tを3(x^2+y^2+z^2)≧(x+y+z)^2 に代入して、3t≧t^2 よって、0≦t≦3 この範囲におけるxy+yz+zx=(t^2-t)/2の増減を調べて(省略) -1/8≦xy+yz+zx≦3を示すことができる。(終) 実数x,y,zがx^2+y^2+z^2=x+y+zを満たしているとき、 x+y+z=tは0以上3以下のある値をとる、 ということはこの解答で証明できていると思うんですが、 実数x,y,zがx^2+y^2+z^2=x+y+zを満たしながら 動くとき、x+y+z=tは0≦t≦3の範囲の『すべての』値をとりうることは 証明できていないような気がします。 どうして0≦t≦3の範囲の『すべての』値をとりうるといえるんでしょうか。 ぜひ教えてください。

  • 数学(ベクトル)の問題

    http://okwave.jp/qa/q8022847.html のNO.7の回答より、 さらに途中式を書いたのですが、 L^2 = m(t-n(s))^2-(a1^2+b1^2+c1^2 ) {(c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s)/(a1^2+b1^2+c1^2 )}^2+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } n(s)={c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}/(a1^2+b1^2+c1^2 ) = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 ){(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}/{(a2^2+b2^2+c2^2 )} }+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } = m(t-n(s))^2-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2/(a1^2+b1^2+c1^2 )+(a2^2+b2^2+c2^2 )(s^2 )+2s{c2(z2-z1)+b2(y2-y1)+a2(x2-x1)}+{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 } ところで {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)+(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +{(a1a2+b1b2+c1c2)s}^2 = {c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2 +2{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s +(a1a2+b1b2+c1c2)^2 (*s)^2 これより、 L^2= m(t-n(s))^2+s^2 {(a2^2+b2^2+c2^2 )-(a1a2+b1b2+c1c2)^2/(a1^2+b1^2+c1^2 )} +s[2{(c2(z2-z1)+b2(y2-y1)+a2(x2-x1))-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}(a1a2+b1b2+c1c2)s/(a1^2+b1^2+c1^2 )}] +{(x2-x1)^2 }+{(y2-y1)^2 }+{(z2-z1)^2 }-{c1(z2-z1)+b1(y2-y1)+a1(x2-x1)}^2/(a1^2+b1^2+c1^2 ) 簡単、 L^2 =m(t-n(s))^2+ps^2+p1s+p2 =m(t-n(s))^2+p(s^2+p1s/p)+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2-(p1/p)^2 )+p2 =m(t-n(s))^2+p(s^2+p1s/p+(p1/p)^2 )-(p1)^2/p+p2 まで、計算したのですが(間違っていたら申し訳ありません)、 ここから、どのように q=-p1/2p が導出できるのかがわからないです。 (rは導出できました。) 数式だらけで分かりづらいと思いますが、計算ミスを指摘しつつ、導出過程も分かりやすくお願いします。

  • 数学の問題で分らないのがあるので教えてください。

    1.次の式を展開してください。 (1)(x^2+2x-1)(x^2+2x-3) (2)(a+b-c-d)(a-b+c-d) 2.次の式を因数分解してください。 (1)9x^2-4y^2-6z+1 (2)2x^4y-16xy^4 ちなみに答えは、 1.(1)x^4+4x^3-8x+3 (2)a^2-b^2-c^2+d^2-2ad+2bc 2.(1)(3x+2y-1)(3x-2y-1) (2)2xy(x-2y)(x^2+2xy+4y^2) です。