• ベストアンサー

離散数学になるのかな?

milkysugarの回答

  • ベストアンサー
回答No.1

>いろいろネット上で調べたのですが、フェルマーの小定理と関係があるんですか? 関係あり過ぎです. まずはmod pにおける原始根を1つ探し,それをrとします.原始根とはi < p-1ならr^i ≡ 1(mod p)となるような数,つまり位数p-1の数のことです.(フェルマーの小定理より,p-1乗したら必ず1に合同になります) 物の本には「原始根表」「mod pでの指数表」なるものが載っているのでそれを参照. するとr^1,r^2,…,r^(p-1)は(mod pで)相異なる数になります.あとはr^iの位数を考えればいいのですが,iとp-1の最大公約数をdとした時,位数は(p-1)/dであることが簡単にわかります. つまりiがp-1と互いに素であることが,r^iが位数p-1になることの条件となります. 以上の話にp=97を代入すればOK.原始根の個数は「96以下の自然数で96と互いに素なものの数」ですから32個なのです.

wildroad
質問者

お礼

数学の苦手な私に、これほどまでに丁寧に説明していただき、ありがとうございます。 実はpを入力した時に、そのaとaの個数を表示するC言語のプログラムを 作っていまして、おかげさまで完成することができました。 >関係あり過ぎです. フェルマーの小定理をつい最近知ったばかりで自信が持てませんでしたが、 だいたいは理解できたみたいです。ありがとうございます。

関連するQ&A

  • 離散数学の証明問題

    離散数学の証明問題 合同でないことを≡×と表します。 Pを素数とし、a≡×0(mod p)とする。また、aの位数をdとする。 このとき、次のことを示せ。 (1)整数nに対して、a^n≡1(mod p)であるならば、かつそのときに限り、d|n (2)dはp-1の約数である。 (3)整数i,jに対してa^i≡a^j (mod p)であるならば、かつそのときに限り、i≡j(mod p) (1)はFermatの小定理を使うと思うのですが、いまいち解法が浮かびません。 (2)はFermatの小定理から自明に思えますが、厳密に証明しないといけないみたいです。 (3)は証明方法がまったく分かりません。 分かる方、証明お願いします。

  • フェルマの小定理について

    次の主張(フェルマの小定理)の証明を与えよ。 「pが素数のとき、aがpと互いに素な整数ならば、a^(p-1) ≡ 1 (mod p) が成立する。」 フェルマの小定理についてあまり詳しくないので分かりやすく教えていただけると嬉しいです。 宜しくお願い致します。

  • オイラーの定理(整数)

    nは自然数、aは整数とする。aとnが互いに素な時、a^{φ(n)}≡1( mod n)が成り立つ。 ここでφ(n)は「n以下の自然数でnと互いに素なものの個数を表す」"オイラーの関数"である。 この定理の例証で、例えばn=45=3^(2)*5のときa=7として考えます。 φ(45)=φ(3^2)*φ(5)となり、φ(3^2)=6、φ(5)=4です。 フェルマーの小定理よりmod 5 で、7^φ(45)={7^φ(5)}^φ(3^2)は {7^φ(5)}≡1 (mod 5)より、7^φ(45)≡1 (mod 5 )・・・(1)になり。 次に7^φ(3^2)≡1(mod 3^2)をしるします。フェルマーの小定理より mod 3 で 7^(3-1)≡1なので7^(3-1)=3k+1、 7^φ(3^2)={7^(3-1)}^3=(3k+1)^3=(3k)^3+3C1(3k)^2+3C2(3k)+1 3C1、3C2は3の倍数なので、7^φ(3^2)≡1(mod 3^2)・・・(2)です。 よって、7^φ(45)={7^φ(3^2)}^φ(5)≡1(mod 3^2)となります。 ここからが分からない箇所なのですが、中国の剰余定理から、 (1)かつ(2)⇔7^φ(45)≡■(mod 3^(2)*5)となる■が、1つだけ存在します。と書いてありますが、自分は中国の剰余定理は、m、nを互いに素な自然数とする。 x≡a(mod m)かつ x≡b(mod n)を満たす整数xはmnを法として、ただ1つ存在する。と書いてあることから、割る数が違えば、a,bのように余りもちがう場合に、整数xはmnを法として、ただ1つ存在する。と思っていたのですが、 この例証では、■≡7^φ(45) (mod 5)かつ■≡7^φ(45) (mod 3^2)のような余りが 一緒の場合を同時に満たす■を求めているような気がして、中国の剰余定理があてはまるか不安です。 自分の考えの間違いや、余りが一緒の場合でも中国の剰余定理が使えるかを教えてください。お願いします。 本では、■=1のとき(1)、(2)が成り立つので、■=1だとわかります。 よって7^φ(45)≡1(mod 45 )となることがしるされました。としめくくっています。

  • フェルマの小定理の証明方法について

    フェルマの小定理の証明は、ふつうは、二項定理と数学的帰納法、または、オイラーの定理を使うようです。以下の証明で、(式a)から(式b)に移るのは妥当なのか、よくわかりません。 [蛇足] フェルマの小定理より、オイラーの定理の証明のほうが簡単なのは違和感を感じるのですが・・・。フェルマの小定理の簡明な証明方法があったら、それも教えてほしいです。 ●オイラーの定理 (a,m)=1のとき    a^(φ(m))≡1 (mod m) 【フェルマの小定理】 a^(p-1)≡1 (mod p)  ただし、aは正の整数(←条件を、少し制約しました。)、pは素数、aとpは互いに素((a,p)=1) とする。 ■証明 数学的帰納法を用いる。 (1)a=1 のときは明らか。 (2)a=k のとき成り立つと仮定して、a=k+1のとき成り立つことを証明する。 言い換えると、mod p において、 k^p≡k ⇒ (k+1)^p≡k+1 を証明すればよい。 以下、合同式は mod p の場合のことを指す。 仮定より、 (k)^p≡k (k)^p-1≡k-1 F(k)=k^(p-1)+k^(p-1)…+1 とおくと、 (k-1)・F(k)≡k-1 よって、 F(k)≡1 ところで、F(k)はp個の元から構成されており、 p-1 Σ(k^m)≡1          (式a) m=0 と書き直せる。ここで、kをk+1に置き換えるが、加法+と乗法・を交換則、結合則、分配則をみたす演算子*とすると、 p-1 Σ((k)^m*(1)^m)≡1     (式b) m=0 と書ける。これより、  p-1 k・Σ((k)^m*(1)^m)≡k  m=0      p-1 (k*1-1)・Σ((k)^m*(1)^m)≡k      m=0 よって、 (k*1)^p-1≡k 書き直して、 (k+1)^p≡k+1     <証明終>

  • 離散数学演習問題

    離散数学演習問題 小さな添え字であることを表す記号を_を前につけて示しています。 全ての整数からなる集合をZとし、pを自然数とする。 任意のa∈Zに対して、[a]_p={b∈Z|b≡a(mod p)}とする。 また、N={1,2,・・・p}、Z/≡_p={[n]_p|n∈Z}とする。 このとき次の2問を証明してください。 よろしくお願いします。 (1)関数f:N_p→Z/≡_pをf(n)=[n-1]_pにより定めるとき、fは全単射である。 (2)Z/≡_P={[0]_p,[1]_p・・・,[p-1]_p}

  • 素数の分類と無限性に関して。

    素数の分類と無限性に関して。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 この証明の流れや、8n+1型の素数が無限に存在することは理解できるのですが、上の証明における「位数は 8 で有るから、 p ≡ 1 (mod. 8) となる」の部分がどのようにして言えるのかが分かりません。フェルマーの小定理を用いているのでしょうか? よろしくお願いします。

  • 数学

    数学の問題です。 (1)x^2+1≡(mod19)を解け (2)a∈(Z/nZ)*の位数をdとする。a^k≡1(modn)⇔k≡0(mod d)を示せ。 (3)P=29で位数11の元は何個あるか。 求め方を教えてください 宜しくお願いします

  • 乗群の位数とラグランジェの定理

    (mod p)の剰余類で乗群G*をつくるとき,(pは素数) 0を含む剰余類は除くので,|G*|=p-1かと思います. a ∈ G*で,巡回部分群Hを生成すれば, H=G*であることも確認できます. ただ,ここでどうしてもわからないことがあります. G*の位数も,Hの位数もp-1で,-1されるために一般に素数にはなりません. ラグランジェの定理から位数が素数の有限群が真部分群を持たないことがわかりますが, G*の位数は,p-1で素数にならないため,真部分群を持ってもよさそうな気がします. どこに間違いがあるのでしょうか?

  • フェルマーの定理の公式の解き方について

    秘密鍵と公開鍵について勉強していますが、フェルマーの定理が使われていると聞いたのですが、このフェルマーの定理というのは大学とかで習うものなのでしょうか?x ≡ 0 (mod p) でなければ x^(p-1) ≡ 1 (mod p) という式をみても計算方法がよくわからず困っています。よくわかる参考書等をご存知の方がいらっしゃればご教授お願いします。

  • 素数の分類と無限性に関して。以前質問させていただいたことの延長になりま

    素数の分類と無限性に関して。以前質問させていただいたことの延長になります。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 同じ方法を用いることで証明することはできたのですが、 この証明の中で用いている「位数は 8 で有るから、 p ≡ 1 (mod. 8) となるの部分に関して ラグランジュの定理         位数nの有限郡Gの任意の部分郡Hの位数はGの位数の約数である を用いた場合、GとHに当たる部分はどこになるのでしょうか。今の段階では、nがp-1にあたり、Hの位数が8と考えています。pが素数で、8はp-1の約数になるとの考えは当っているでしょうか・・? よろしくお願いします。