• ベストアンサー
  • 暇なときにでも

非可算無限なグラフ

単に興味本位からの疑問なのですが・・・ グラフGは、頂点集合Vと辺集合Eを用いて、定義するのが普通ですよね。(もちろん、定義の仕方は色々ありますが) このとき、頂点集合Vと辺集合Eは、無限にする場合でも、暗黙のうちに可算集合と考えるのが普通ですよね。そうしないと、i,jのような添え字を用いた操作ができませんから。 このV,Eを非可算集合、例えば、実数濃度と考えた場合のグラフの理論は、研究されているのでしょうか?そのような理論の、応用はあるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数152
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • take008
  • ベストアンサー率46% (58/126)

辺は V×V の要素ですから,Vの要素を i,j とすれば <i,j> で辺を表せます。 添え字と考えなくいもよいし,添え字にしても自然数に限る必然性はありません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 可算であることの証明

    可算についてなのですが、次の2つがどうしても証明出来ません。 1.可算集合の無限部分集合は可算である 2.有理数a,bを端点とする開区間(a,b)全体の集合は可算である 一応濃度、可算集合については一通り勉強したのですが…。 言っている事はなんとなくわかるのですが、自分でいざ問題を解いてみる(証明してみる)と何をどう書いてよいのやらまったくのお手上げです。 きちんと理解できていないのが原因だと思うのですが、いろいろな本を読み漁ってもこの”集合論”という分野、いまいちピンときません。 どうか回答のほどよろしくお願いします。

  • 可算無限集合と非可算無限集合の違いが分かりません。

    例えば、こういう問題のときそれぞれ可算無限集合と非可算無限集合のうちどっちですか? (1)0≦x≦1を満たす実数x (2)任意の自然数N (3)任意の実数R 回答よろしくお願いします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

その他の回答 (1)

  • 回答No.1

位相幾何(topology)とグラフ理論は連続濃度と離散濃度の関係に似てるかもしれません.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 第2可算公理

    X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。 という問題です。 第2可算性を持つ⇔位相空間が可算集合からなる基を持つ で定義されています。 更に、 位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。 証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • "無理数全体の集合から実数全体への全単射が存在する"の証明の説明をお願いします。

    次の問題の解答で分からないところがあるので説明をしてもらいたいです。 問: 無理数全体の集合からRへの全単射が存在することを証明せよ 解: R-Q から R への全単射の存在を示せばよい R-Q は無限集合であるから、可算部分集合 A が存在する ここで Q は可算集合なので、A∪Q は可算集合 よって全単射 f: A→A∪Q が存在するので 関数 g:R-Q →Rを     g(x)= { x (x∈R-A)         〔 f(x) (x∈A) と定義すると g は全単射である ■ 最後のところで、なぜgを上のように定義すると全単射になるのかがわかりません。 よろしくおねがいします。

  • アレフ0より小さな濃度をもつ無限集合

      アレフ0(可算集合の濃度)より小さな濃度をもつ無限集合はありますか。  

  • 濃度の厳密な定義はもはや不可能なのですか?

    識者の皆様宜しくお願い致します。 最近,集合位相入門(松坂和夫)を購入し拝読しておりますがこの本のp65にて 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう』 という記述がありますが,これは正確に解釈すると 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろうが万一ダメだったとしても当方は一切責任持ちません』 と見て取れ,何とも歯切れの悪い定義だなぁと感じました。 結局,濃度(という同値類)はφと有限集合{1,2,…,n}と可算集合N(=:アレフ_0)とアレフ_0の非可算集合Rとアレフ_1の非可算集合2^R,アレフ_3の非可算集合3^R,… と可算個に類別できるのだと思います。 濃度の厳密な定義を知りたいのですがこの "実は集合全体の集ま…ことは当然認めてもよいだろう" の箇所の曖昧さをすっきり解消させるにはどう記述すればいいのでしょうか? 公理的集合論の書籍でさえも濃度の定義の際に「集合全体の集まりを類別する」という表現をさり気なく記述せずに類別によって濃度の定義をしているようです。 濃度を厳密に定義する場合,どういう手順で類別を定義すればいいのでしょうか? また, 歯切れのいい濃度の定義をしてある書籍やサイトがあれば是非ご紹介下さい。

  • 無限集合の定義で

    ∃f:全単射 such that f:A→B (但し、BはAの真部分集合) の時、Aを無限集合と言うのがデデキントの無限集合の定義だと思いますが 非可算集合の時にも(例えば実数体)このような全単射写像はするのでしょうか?

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • 実数の濃度(連続体濃度)についての問題の添削をおねがいします。対角線論法をつかってます。

    問: 任意の写像 f:N→R につき、f は全単射でないことを背理法を使わず証明せよ 添削していただきたいのは上の問です 背理法に引っかかっていないのかどうかが自分には分かりません *のように、並べると――等とすることは可算集合であることを仮定することになってしまいませんか? 解答:  開区間(0,1)をとると 全単射 (0,1)→R x |→tan[π(x-1/2)] がつくれるので、(つくれてますか??) |(0,1)| = |R| よって、g:N→(0,1) が 全単射でないことを示せばよい 各実数 g(n) を10進法によって無限小数に展開して (ただし、有限小数も無限小数で表す) g(n) = 0.a(n1)a(n2)a(n3)… と表すとする ( a(ni)は0から9までの整数 ) 全て並べると……* g(1) = a(11)a(12)a(13)… g(2) = a(21)a(22)a(23)… g(3) = a(31)a(32)a(33)… … ここで a(11)≠b(1), a(22)≠b(2), … となる数列をとれば 0.b(1)b(2)b(3)… という実数は g(1), g(2), … のどれとも異なる 従って g(n) の値域に入らない実数があるため、 gは全射でない  ■ よろしくおねがいします。

  • 可能無限と実無限

    可能無限と実無限って何ですか? このカテゴリで合ってますか? 自然数全体という集合が存在すること関係ありますか? 集合の濃度と関係ありますか(可算無限の友達ですか)? 実数直線の両端にくっついてる「±∞」と関係ありますか? 無限大超実数(NSA)と関係ありますか? 数学科の大学生に教える感じで、お願いします。

専門家に質問してみよう