• ベストアンサー

二次元の閉じられた図形での重心が必ず求められることの数学的根拠

図形の外にあれば重心とは言わないでしょうが、このような不動点(?)が2次元の図形では存在すると思いますが、これは数学的にはどのように表現されることなのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.4

重心とは、その点を通る任意の直線によって図形を2つに分けると、必ずその図形Zの面積が2等分されるという点、と定義できます。 ここで、こういった点が2つ存在すると仮定します。重心Gと重心G'を通る平行線を引きます。重心の定義から、これらの平行線のどちらによってもその図形は2等分されます。Gを通る任意の線Hによって分けられたそれぞれの図形をA,Bとすると、A=Bとなり、G'を通り、かつHに平行な線H'によって分けられたそれぞれの図形をA',B'とすると、A'=B'となります。ただし、BはG'を含み、A'はGを含むものとします。 図形からHとH'の2本の線で切り取られた部分をCとすると、A'-A=Cとなります。よって2A'-2A=2Cですが、 A+B=A+A=2A=Z A'+B'=A'+A'=2A'=Z ですので、2A'-2A=Z-Z=0、つまりC=0となります。 任意の2本の平行線で切られた部分の面積が0ということは、2本の平行線の距離が0、つまり2本の平行線が重なった場合しか考えられません。この場合、G,G'の双方が一本の直線に乗ることになりますが、G,G'の2点を通る直線は一意に決められるため(逆に言えば一意に決められてしまうため)、任意の直線H、およびHに平行なH'によって成り立つ上記の関係と矛盾します。よって、GとG'は別の点であるという仮定が否定され、G=G'ということになります。 上記により重心は2点であり得ないことから、3点以上についても上記の類推でとりえず、よって重心は一点に存在しうることになります。 厳密には#3さんの回答にあるとおりベクトルの積分で計算をすることになり、場合によっては重心が図形の外に出る場合もありますが、方程式の実数解と虚数解に相当ということはありません。もともと図形の内側と外側というのは重心の計算に取りあまり意味はありませんので、場合によっては重心が図形の外に出てしまう…くらいの話になります。 重心が図形の外に出てしまう典型的な図形は、2つの同心円で切り取られた輪状の図形ですね。この場合、重心は同心円の中心になりますが、輪状の図形からみると図形の外側、ということになります。

kaitaradou
質問者

お礼

ご丁寧にご説明いただいてありがとうございます。勉強させていただきます。

その他の回答 (11)

  • BLUEPIXY
  • ベストアンサー率50% (3003/5914)
回答No.12

#11>そういうような意味です なるほど、私は用語の使い方を誤っていたようです。 すみませんでした。 #5で言っているのは、単なるモーメントの意味です。

kaitaradou
質問者

お礼

私の理解の範囲を超えていますが、門前の小僧習わぬ経を読むの通りで、及ばずながら小僧も勉強させていただきたいと思います。

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.11

そういうような意味です。確かに「慣性モーメント」は「2次のモーメント」に近い概念です。 【慣性モーメント】=Σ(r_i)^2・m_i 【2次のモーメント】=(Σ(r_i)^2・m_i)/M です。

  • BLUEPIXY
  • ベストアンサー率50% (3003/5914)
回答No.10

#6>重心位置を軸として選ぶと、一番小さなエネルギーで回転させることが、できる なるほど、納得です。 ちゃちゃをいれてすみませんです。 >「重心の慣性モーメントが0」というのは間違っている R=(Σm_i r_i)/M で重心の位置を決める時、 MR=(Σm_i r_i) としてモーメントの総量は、重心に全ての質量があるとして良い。 という意味と、 基準点を重心に取った時には、モーメントは0になるという意味だと 思うのですが? やはり、間違いですか? それとも2次のモーメントは0にならないという意味なのでしょうか? またもや、回答でもない質問をしてしまうことをお許し下さい。

kaitaradou
質問者

補足

私も伺いたいと思いますからご遠慮なさらないでください。

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.9

BLUEPIXYさんのNo8の解答は正しいと思います。ただ、 「重心の慣性モーメントが0」というのは間違っている、ということです。

  • BLUEPIXY
  • ベストアンサー率50% (3003/5914)
回答No.8

>回転するのは図形であって重心ではないと考えるのではいけないのですか。 方向はどうでもいいですが、重心を通る直線を図形に描いたとします。 その方向に力を加えたとすると、直線で分割された、右側の図形と左側の図形のモーメントは同じであるはず(重心を通る直線の両側で釣り合っている)です。 釣り合っていないのなら回転を起こしますが、 釣り合っているなら(誤差を考えない理想的な状態なら重心自体が力によって移動するが)回転はしないはずです。 一般的に、小さいハンドルと大きいハンドルが同じ中心に取り付けられているとしたら、大きいハンドルの方が、楽に回せるはずで、回転の中心に近い方がものを回転させるために必要な力は大きいはずだということを言っています。(エネルギーとしては同じになるのかな?)

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.7

図形の外にあっても重心と言うと思います。また、「不動点」という言葉は、この場合、適切でないかもしれません。数学では「不動点」は別の意味で使っています。また、慣性モーメントが0というのも間違っているかも知れません。(普通の図形の場合、重心における慣性モーメントは0ではないですよね)また、重心を通る直線で面積が2等分されるというのも誤りですよね。 2次元の図形の場合重心(x,y)は xS=Σxi・ΔSi yS=Σyi・ΔSi で定義されます。ここで、Sは図形の面積、ΔSiは図形の微小面積、xi,yiはΔSiのx座標、y座標です。 式から明らかに、(x,y)は一意です。 更に言えば、図形が3次元、4次元、5次元・・・であっても重心は一意です。4次元以上の場合ΔSiは数学の言葉では「測度」というのが普通だと思います。

kaitaradou
質問者

お礼

別のはるかに高等なご質問にも重心と速度の関係が出てきたと記憶していますが、素朴なコマ回しの重心と速度という概念がどこかでつながっていることに感激しています。

kaitaradou
質問者

補足

速度は測度の誤りでした。以後気をつけます。

  • mech32
  • ベストアンサー率57% (23/40)
回答No.6

#3です。 すみません。言葉不足でした。言い換えます。 何かの図形を回転させようと思ったら、どこかに軸を選びます。この軸を選ぶときに、重心位置を軸として選ぶと、一番小さなエネルギーで回転させることが、できる、という趣旨です。

  • BLUEPIXY
  • ベストアンサー率50% (3003/5914)
回答No.5

すみません、回答ではなく、#3を読んでいて疑問に思ったのですが、 #3>何かの図形を、くるくる回そうとしたときに、一番小さなエネルギーで回転させることができる点が重心です 何かの図形を回す時に、重心に力を(どうやってかはともかく)加えたとしても、重心は、慣性モーメント0の点ですから、回転しないと思うのです。 (もし、回転するようならそこは重心ではなく、別の場所が重心であって、その重心を中心に回転する?) もし、ある図形を一番小さなエネルギーで回転させるとしたら、 重心からの距離が一番遠い点に重心方向と直角に力を加えることだと思うのですが、勘違いしていたらすみません。私は誤解しているのでしょうか?

kaitaradou
質問者

お礼

ご投稿有難うございます。回転するのは図形であって重心ではないと考えるのではいけないのですか。

  • mech32
  • ベストアンサー率57% (23/40)
回答No.3

重心Rの数学的表現は、 R=(Σm_i r_i)/M R=∫rdm などが一般的でしょうか。ただし、Rとrはベクトルで、rは、微小質量m_iの位置ベクトルです。また、Mは全質量です。 さて、重心の存在についてですが、「数学的根拠」の説明には必ずしもならないかもしれませんが、次のようなイメージを持っておくのは有用だと思います。簡単のため1次元で考えて、 平均=重心=1次のモーメント=∫xf(x)dx aまわりの分散=aまわりの慣性モーメント=2次のモーメント=∫(x-a)^2f(x)dx つまり、統計学でいうところの「平均」は、図形の「重心」に、「分散」は「慣性モーメント」に対応します。平均、あるいは重心は、この、慣性モーメントを最小にする点のことである、というふうに考えることができます。 言い換えますと、何かの図形を、くるくる回そうとしたときに、一番小さなエネルギーで回転させることができる点が重心です。そう考えて、ある点aまわりの慣性モーメント(分散)を求めますと、 aまわりの分散 =∫(x-a)^2f(x)dx =∫(a^2-2ax+x^2)f(x)dx =a^2∫f(x)dx-2a∫xf(x)dx+∫x^2f(x)dx となって、aに関する2次式、言い換えると、下に凸な放物線になって、かならず、最小値が存在することになります。この最小値となるaが平均すなわち重心になる、といえば、重心がただ一つ、必ず存在することがイメージできるのではないでしょうか?

kaitaradou
質問者

お礼

ご教示ありがとうございます。少々私には難しいお話ですが努力して理解に努めたいと思います。

  • tomtom_
  • ベストアンサー率39% (43/110)
回答No.2

図形が凸であれば図形の内部になりますが,例えば三日月のような凸でない図形の場合は,図形の外に重心があります. 図形の内部か外部に重心があるということは,結局必ずどこかに存在するということになると思います.

kaitaradou
質問者

お礼

ご教示ありがとうございました。何か方程式のようなものを想定して図形の内部に重心があるのは実数根、外にある場合は虚数根に対応するというようなことはないでしょうか。

関連するQ&A

  • 2次元CADで重心計算

    いつもお世話になっております。 1点質問させてください。 小生が使用のCADはオートCADメカニカル2006です。 作図した図形の重心を求める機能はありますか? 実際は奥行きから重量が分からないといけないと思いますので 3次元CADじゃないと駄目なのかなって思ってます。 2次元CADでも可能であればご教示お願いします。 以上です。

  • 図形の重心を取るプログラムを教えてください

    現在プログラミングで困っています。 そのプログラミングというのは、 「二値化した画像を二次元配列に置き換えそこから重心を求めよ」 というプログラムです。 重心を求めたい画像は、以下の特徴を持っています。 ・形はほぼ楕円。 ・輝度は0と255で二値化。重心を求める部分の輝度は0となっています この図形の重心を求めるには、どのようにプログラムを組めば良いのでしょうか。 みなさんのアドバイスをよろしくお願い致します。 また、私はプログラミングについてはほぼ初心者なので、詳しい説明をして頂けると助かります。 お手数なのですが、よろしくお願い致します。

  • n角形の重心を求めるアルゴリズム

    平面2次元のn角形の頂点のデータがあります。n点の座標ですから(x,y)がn個並んでいます。そのような図形の図心(重心)の座標を計算するアルゴリズムがないでしょうか。最終的にはプログラムとして離散的な処理をするため、1%ぐらいの誤差は許容範囲です。n角形と言ってもせいぜいn=3,4,5,6程度です。 欲を言うと、3次元も考えており、平面に含まれることが分かっているn個の点(3次元空間内)を平面の2次元空間に変換して重心を求め、それを3次元空間に引き戻せば3次元での重心となります。そのためにも2次元での重心の座標を求めるアルゴリズムが必要なのです。 よろしくお願いします。

  • いびつな図形の重心の求め方を教えてください。重心を求める基本があれば教

    いびつな図形の重心の求め方を教えてください。重心を求める基本があれば教えていただけると助かります。大学では微分積分は勉強しました。 問題 直線Y=X+2と放物線Y=x^2で囲まれた領域Dの重心を求めよ。

  • 数学で言う重心

    Q数学でいう重心って本当に重心なんですか?? A板を辺BCに平行に細かく分割して棒状にすると、一本一本の重心は中点になるよね。それらはAM上に並ぶ。 すると全体の重心はAM上にあるはずだ。 教えてほしいところ ・確かに、一本一本の重心は中点になり、AM上に並びますが、なぜそうなるとAM上に全体の重心があるといえるんですか??

  • 三角形の数学的重心と物理的重心はなぜ一致するの?

    三角形の数学的重心というのは、 △ABCの3頂点のベクトルをa↑,b↑,c↑と表したときの、 p↑=(1/3)a↑+(1/3)b↑+(1/3)c↑ のことで、いわば、3点の位置平均です。 それに対して、三角形の物理的重心は、内部が詰まった三角形の薄い板があったとして、それをバランスよくささえることができる点のことです。 それらはなぜ一致するのですか? できれば、数式での数学的説明と、直感的な物理的説明の両側面からお願い申し上げます。

  • 三次元空間においた図形の方程式

    三次元における図形の方程式の表し方が分かりません。 ・n次元の図形の方程式は『等号』が(n-1)個で表現される。 という文章も目にしましたがその理由も分からず。。。 例えば,三次元における円の方程式として,『円の中心座標,O1(x0,y0,z0)』と『円周上の三点,P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)』がそれぞれ得られた場合,どのような方法でどのような方程式が求められますか? 一つ考えた方法としまして,三点を通る球と平面をそれぞれ求め,それらの連立を解いてみましたが,それだけだと確実に変数が一つ無くなってしまいます。 上記の『三次元は等号が二つ』という事が関係してくるのでしょうか。。。 三次元空間に対しての知識が不足していますので,出来れば『具体的な式』や,さらには『具体的な係数など』まで頂けると非常に助かります。 お願い致します。

  • 平らな紙の上に4次元図形を簡単に描く方法として

    平らな紙のうえに4本の閉じられた線を描き、必ず4本の線を各点において交わらせてできる図形は4次元図形の表現になると聞いていますが、一本の線を赤くすればこれは時空間の表現にもなるでしょうか。赤い線を時間軸としての話ですが・・。

  • 図形

    △ABCの外心をO,重心をG、垂心をH,BCの中点をMとすると (1)AH=2OMであることを示す。 (2)O,G,Hは一直線状にあって、OG:GH=1:2であることを示す。 問題の2つについて教えてください。 数学1の平面図形を勉強してからこの問題に取り組んだのですが問題になるとわかりません。 〇△ABCの外心だから図は三角形の外周りに円がある図形。 〇重心は三角形の頂点とその対辺の中点を結ぶ 3 つの線分は 1 点で交わり、比が1:2 〇垂心は三角形の 3 つの頂点からそれぞれの対辺に引いた垂線は 1 点で交わる点 図はなんとか書けそうなのですが解き方が解りませんので、ご指摘宜しくお願いします。

  • 数学A図形について

    数学Aの図形について質問です。 解説について質問です。 重心と外心が一致する三角形について問題なのですが。 GDとBCが垂直だと外心の定義から導いたとしても、 ADとBCが垂直になるとは限りませんよね。 重心は、対辺Cの長さがBよりも長かったとしても成り立ちますし。 要するに、ADが導き出されれば、GDは同じくとなりますが、 GDがすいちょくだとしても、その逆は成り立たないと思うのですが。 これでいいのはなぜなのかを教えてください。 AGがGDと少し微妙に屈折してるかもしれませんしね。