• ベストアンサー

コーシーの定理を使って・・・・

roro02の回答

  • roro02
  • ベストアンサー率26% (15/57)
回答No.1

申し訳ありませんが、そのコーシーの定理を書いてもらえませんか? それが分かればトライできます。ちょっと調べられるだけの時間と自信がないのでよろしくお願いします。何も考えず一字一句そのまま書いてください。 それから()^2p^2のところの右の累乗はpだけにかかっているのですよね? また、導きたい右辺のルートはどこまでかかっていますか? 分数全体ですか? それともπだけですか? 分数全体だと思いますが、念のため。

puh
質問者

補足

ご回答有り難うございます。 コーシーの定理は任意の閉曲線の線の複素経路積分が0となることを示す定理です。 二乗はカッコにもpにもかかっていますので、上記の数式に間違いはございません。 右辺の√はパイだけにかかっております。

関連するQ&A

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • コーシーの積分定理

    コーシーの積分定理を用いて 1/(2πi)∫[C] e^z/(z-2)dz (C:|z-2|=1) を計算しろという問題なのですが、考え方がよく分かりません。 どのように計算していけばいいのでしょうか?ご教授お願いします。

  • VBAである領域で虚数になる関数の積分

    VBAを使って、 ある領域で虚数あるいはマイナス無限大になる関数f(x)の実数領域だけで積分を行いたいのですが どうすれば良いですか? dx = R / 500 '積分領域の設定 y = 0 For i = 0 to 500 x = i * dx If f(x) > 0 Then y = y + f(x) * dx End if Next Cell(1,1) = y としても、 If f(x) > 0 Then のところで、虚数とかマイナス無限大が出てくるとエラーになって 計算が前に進みません。 If f(x) <> voidとかも試してみましたが うまくいきませんでした。 どうすれば、虚数とかマイナス無限大以外の部分を積分することが出来ますでしょうか?

  • 虚数「i」の無限大への極限

    例えば、 0→∞の積分∫exp(-1-ai)dx (iは虚数単位)を考えると、 その計算途中で、 (-1+ai)/(i+a^2)*[exp{(-1-ai)x}](0→∞)となるところがあります。 ここで気になったのが、[ ]内のxに∞を代入したときです。 「前に「-」があるので、虚数は考えなくて良い(=0)」と言われたのですが、 何か納得がいきません。 考えなくても良いとは?? そもそも虚数の正負とは?? もちろん、[ ]内が(-1)になると、答えも合います。 このようなとき、「i」をどう見ればよいのでしょう。 虚数がどうしてもはっきりと分からないのです。 どなたか御教授願います。

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが tを実数とし,kはΣの添え字,mは極の個数,iは虚数とします. このときtがt<0のとき ∫^{+∞}_{-∞}f(x)exp{itx}dx=-2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=-πΣ^{m}_{k=1}Res{f(z)exp{itz}} となる これで合っていますでしょうか? よろしくお願いします。

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが t>0については ∫^{+∞}_{-∞}f(x)exp{itx}dx=2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=πΣ^{m}_{k=1}Res{f(z)exp{itz}} となりますが t<0のときはどうなるのでしょうか。 マイナスになるだけでしょうか。 よろしくお願いします。

  • 留数定理について質問です。

    留数定理について質問です。 次のような問題が出題されました。 「Fourier積分を利用し微分方程式の主要解を求めよ。 (d^2/dx^2)G+κ^2G=-δ(x-ξ)」 解答の詳細は省略しますが G=(1/2π)∫dk{exp[ik(x-ξ)]}/(k^2-κ^2) の積分を[-∞,∞]で計算することに帰着します。(これまでのところで、δはδ関数、iは虚数単位です。) これをkの複素平面上で留数定理を用いて計算するという定石的なやり方なのですが、積分路の取り方としてx-ξ>0なら虚軸が正の半円+実軸上、x-ξ<0なら虚軸が負の半円+実軸上というループを採用します。極が実軸上にあるのでx-ξ>0の場合のループではk=κのみをループ内に含むように、x-ξ<0の場合はk=-κのみを含むように選ぶと Res(κ)=exp[iκ(x-ξ)]/(2κ)より x-ξ>0のときG=i{exp[iκ(x-ξ)]}/(2κ) とあります。ここまではいいのですがx-ξ<0の場合、 「同様に、G=i{exp[-iκ(x-ξ)]}/(2κ) (x-ξ<0)」 となっています。自分の計算ではG=-i{exp[-iκ(x-ξ)]}/(2κ)となるのですが、何故合わないのか分かりません。留数の公式に当てはめるとexpの肩と全体の符号が極の選び方で逆になるように思うのですが、解答では全体の符号が変化していないように思います。 x-ξ<0の場合の計算の詳細を教えていただけないでしょうか?

  • exp(ikx)の積分

    exp(ikx)のマイナス無限大から無限大までの 積分の公式または方法はありますか? iは虚数でkは定数です。

  • 留数定理の質問です

    ∫[x=0→x=∞] dx exp(iax) / b-x^2   の積分値って留数定理で求まりますか?もしできるのならば、やり方を教えてください。よろしくお願いします。

  • 有限までのガウス積分

    積分範囲が(0~p)のガウス積分 ∫exp(-a x^2)dx を行いたいのですが、どうしてよいかわかりません。 教えてください。