• ベストアンサー

n×n複素対称行列の対角化

oodaikoの回答

  • oodaiko
  • ベストアンサー率67% (126/186)
回答No.3

数学屋のoodaikoです。 >ベクトル空間は >・・・ >・・・ >が成り立つ. >の(I)(II)が満たされればOKです >所詮,物理屋の数学ですから穴だらけかも知れません. うーん。穴だらけですね。 f(^^; (siegmund 先生、失礼します) まずベクトル空間を定義するには係数としての体を定めておく必要があります。(つまりスカラーとしてどんな体を使うかを決めておきます) 体とは大まかに言えばその中で四則計算が自由にできるような(ただし0で割ることを除く)代数系のことです。 もっと厳密に言えば、その中で和と積という2種類の演算が定義され、各演算に関して可換群になっており(ただし和の単位元0に対する積の逆元--つまり0で割ること--は定義されない)、かつ和と積の間に分配法則が成り立つ。--ような代数系です。 そこでベクトル空間を定義する時は係数体とコミにして「体K上のベクトル空間V」という必要があります。 まあ実用的には係数体としてC(複素数体)またはR(実数体)を使う場合がほとんどなのでわざわざ言わないのでしょうが、情報数学などでは有限体上のベクトル空間などもよく使いますので。 それから(I)(II)の条件だけではベクトルの和としての逆元の存在、およびスカラーと逆元の関係などが言えません。 (I)の条件は 「元同士の和が定義され、和に関して可換群になっている。」 とした方が簡単になります (「可換群」という言葉の定義の中に、結合法則および交換法則の成立、零ベクトル(単位元)および逆元の存在、がすでに含まれています) とはいえ適用範囲が最初から明確になっている限り、実用的にはsiegmund先生の定義で十分だと思いますので、数学屋のこうるさいツッコミなどは無視して下さい。(^^; さて話題になっている行列の線形独立(一次独立)についてです。 行列というのは線形写像の表現形式です。特にn次元のベクトル空間からm次元のベクトル空間への線形写像はm×nの行列として表現されます。(ただしベクトルは縦ベクトルとして表示するものとします)m×n行列全体の集合(つまりn次元ベクトル空間からm次元ベクトル空間への線形写像全体の集合)をM(m,n)と書きます。線形写像についても行列に対する演算で和とスカラー倍を定義することにより、M(m,n)はベクトル空間となります。この空間の次元はm×nになります。 ベクトル空間ですから線形独立も定義できます。従って行列にも線形独立性は定義できます。 2×2の場合はsiegmund先生の回答のように4つの基底が存在します。 確かに行列(線形写像)に関しては線形独立と言う言葉を使うことはないようです。少なくとも行列を写像として扱っている限りは。 というのも数学では写像(関数)が構成する空間の幾何学的構造を研究することもよくあるからです。その場合、例えば2×2実行列全体の空間M(R,2,2)は実数体上の4次元ベクトル空間R^4と同一視されます。そうなると線形独立とか基底の概念が意味をもってきます。 ではM(R,2,2)とR^4は幾何学的にも同じ構造ではないかと思われそうですが、そうではありません。基本的なベクトル空間としての構造は同じですが、行列の積や行列式に対応するような演算は通常のn次元ベクトル空間には定義されませんし、それはn次元ベクトル空間の内積、外積、ベクトル積などとも異なった種類の演算です。そこで行列の演算を使って距離や位相などを入れたり、あるいは各種の演算と位相構造を併せて位相群として考えたりすることにより、行列空間は単なるR^nより豊かな幾何学的構造をもつようになります。 また別の観点として、n×n行列をn個のn次元縦ベクトル(または横ベクトル)を横に(または縦に)並べたものと見なせば、行列の各列(または各行){成分ベクトルといいます}が線形独立か線形従属か、という議論ができます。 これは行列の正則性と関係があって、行列が正則であることと成分ベクトルが線形独立であることは同値な条件になります。言い替えれば、行列式の値が0になることと成分ベクトルが線形従属であることも、同値な条件になります。 私が思うにNo 188684の質問者の方は何か勘違いしているのはもちろん、どうも線形独立と線形従属を逆に理解しているようにも思えます。 >「もしも、対称行列が一次独立になった場合 というのはこの意味で成分ベクトルが線形従属になった場合のことを尋ねているのでないかと思います

nuubou
質問者

補足

そうだとするとレモンさんの質問と回答はどのようになりますか? 詳しそうなのでちなみにもう一つお聞きします 実正方行列において対称行列と交代行列以外に有名な正規行列はありますか? 以上よろしきお願いします

関連するQ&A

  • 対称行列 対角行列

    対角行列と対角化について質問させて頂きます。 対角行列は、対角成分以外が0の正方行列です。 対称行列は、t^A=Aが成り立つ正方行列Aです。 ここで、対称行列の定理で、 ・対称行列の異なる固有値に属する固有ベクトルは直交する。 というものがあるのですが、これは対角行列にも言えるのでしょうか? 対角行列は対称行列なので言えると思いますが、 テキストに特に記載がなかったので質問させて頂きました。 以上、ご回答よろしくお願い致します。

  • 対称行列の対角化

    行列Aの固有値と固有ベクトルを求めよ。また、行列Aを対角化せよ。   (3 1 1) A=(1 2 0)   (1 0 2) っていう問題で、固有値1,2,4は出したんですけど、そこから普通に固有ベクトルを出して対角化しようとしたらうまくいきませんでした。 対称行列では何か特別な方法を使うんでしたっけ? Aは3次の正方行列です。 どなたかわかる方教えてください。

  • 行列の対角化について

    実対称行列A:= | 0 1 2 | | 1 1 3 | | 2 3 0 | に対し、tPAPが対角行列となるような実正則行列Pはどのように求めればよいのでしょうか? この場合は、固有値&固有ベクトルが簡単には求まらないので、簡単には対角化のための行列が求まりません。(たいていの問題では求まるんですが。) このような時は実二次形式を利用して解く、というような事は、色々見るのですが、いざやってみると行列Aの第1行第1列が"0"である事が非常に扱いづらいのです。つまり基本行変形だけで三角行列に変形できないのです。 どなたか教えていただけないでしょうか?

  • 対称行列とその対角化行列

    対称行列とその対角化行列 行列要素が複素数である行列Aが(A^T)=A(Tは転置)を満たすなら,Aは対称行列といいますか?(ネットで見る限りではA^T=Aなどという場合,行列要素は実数である場合が多いようなのですが.) 実対称行列は直交行列で対角化できて,正規行列はユニタリ行列で対角化できますが,行列要素が複素数でA^T=Aを満たすような行列はどのような行列で対角化可能なのでしょうか?普通にユニタリ行列でしょうか?それとも,要素が複素数で(U^T)U=I(単位行列)なる行列Uによってできるのでしょうか? 要素が複素数で(U^T)U=Iなる行列Uに名前はついているのでしょうか? よろしくおねがいします.

  • 対角化不可能な4次正方行列

    行列A= (-1,0,0,1) (0,1,0,0) (0,0,1,0) (4,0,0,-1) について。 Aの固有値を求め、それぞれの固有値に対するAの固有空間の基底を一組求めよ。また、適当な正則行列Pを求めてp^(-1)APが対角行列になるようにせよ。 という問題がわかりません。 自分で計算したところ、λ=-3,1(3重解)と出ました。 λ=-3のとき、基底のひとつはt^(1,0,0,-2)と出ました。 問題はλ=1のときです。(1*E-A)を変形したときのランクは1で、未知数4だから4-1=3>0で対角化不可能です。 このときの固有ベクトルをt^(x,y,z,w)とするならば、z=2xという関係式から t^(1,0,0,2) t^(0,1,0,0) t^(0,0,1,0) を基底に選んだのですが、これは間違っているでしょうか? あと、この後どうやったらいいのかわかりません。 いま出した4つのベクトルを正規化して横に並べても、これはPにはならないですよね。 教えてください。

  • 対称行列を直行行列で対角化

    次の対称行列を直行行列で対角化せよ、という問題で、解き方が分からないので一つずつ順を追って教えていただきたいです。 3 0 0 0 1 2 0 2 1 自分で計算してみて、固有値は-1と3と出たのですが、この値で合っているのか、合っていたとしてこの次に固有ベクトルをどうすれば求めるられるのかが分からないです… よろしくお願いします。

  • 線形代数 行列 対角化

    対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 行列の対角化

      ┌1 -2 -2┐ A=│1  2  2│   └(-2) 2  1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が   ┌0 0 0┐ P=│1 0 0│    └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか?

  • 固有値が重複している行列の対角化

    線形代数の質問です。 二次行列Aを、ある正則行列Pを用いて(P^-1)APと対角化するときのPを一つ求めよ、という問題があります。ここで、Aの固有値が二つあれば固有ベクトルも二つ求まりそれらを並べることでPがわかりますが、固有値が一つしかない場合はどうしたらいいのでしょうか。 教科書の例題を見ると、A=[a1,a2](a1=[3,-1]、a2=[0,2])のとき、固有値はλ=3で、[λI-A]x=0よりx+y=0となり、固有ベクトルは[1,-1]となります。このあとどのようにして正則二次行列Pを求めればいいのでしょうか。 どなたか御回答よろしくお願いします。

  • 行列の対角化について

    n次正方行列Aがある対角行列と相似の時、行列Aの各特性根αに対する固有空間の次元の和がnになることは分かるのですが、各特性根αの(特性方程式の)重複度と固有空間の次元が一致するのがなぜだか分かりません。どなたか教えてください。お願いします。