jmh の回答履歴

全608件中41~60件表示
  • 素朴な疑問。整数とは?

    整数とは? 「自然数 1,2,3,... と 0 と -1,-2,-3,... のこと」という回答だと、 では、自然数とは? などと質問が続くと思います。 なるべく簡潔で厳密な説明を求めています。

  • 確率の「同様に確からしい」とは

    2枚のコインを同時に投げて、表と裏が出る確率を求めよ。 という問題の解説に 「問題文では、2枚のコインを特に区別してないが、 確率の計算では "同様に確からしい"根元事象を調べないといけないので コインにX、Yの区別があるように考えないといけない」 と書かれているのですが、なんとなく言いたいことはわかりますが 完全に理解することが出来ません。 「"同様に確からしい"根元事象」 とはもっとわかりやすく言えばどういうことなのでしょうか? "同様に確からしい"根元事象を調べないといけない→区別をつけないといけない となる理由もよくわかりません。 よろしくお願いします。

    • ベストアンサー
    • noname#188197
    • 数学・算数
    • 回答数4
  • 集合の問題です

    mを自然数の定数とする。1から100までのすべての自然数の集合を全体集合Uとし、その部分集合をA、B、Cを次のように定義する。 A={x|xは偶数} B={x|xは3の倍数} C={m、m+2、m+4} (1)m=2とする。自然数nがCに属することは、nがAに属するための□条件 (2)mが奇数であることは、―(A∪B)∩Cの要素の個数が2であるための□条件 どなたかわかる方教えてください。宜しくお願いいたします。 ちなみに―(A∪B)はAまたはBでないと言う意味で表しました。

  • 命題 コロッケを食べない

    命題は真偽が定まる文や式のこと。は調べました。  コロッケを食べない。 はどのような考えで 命題とすれば。 食べるか食べないか判断する?  チョコレートは好きである は 人によるので 命題ではないとしていいでしょうか。                               好きか嫌いか判定できる?

  • a^0=1 の証明(改)

    以前質問し、そこで指摘された所を修正してみました。 間違えてる点があれば、さらに指摘してください。 -- ここから -- 指数関数は、以下の規則により定義されている。ただし、底と指数及び値域は実数とする。 (1) a^1 = a (2) a^p a^q = a^(p+q) (3) 連続関数である ※定義域は、(3) が満たされる範囲により決定される。 まず、p ≠ 0 での 0^p と 0^0 の関係を確認しておく。 後で述べる理由により (2) を無条件には使えないので、未知の値が1つの場合のみ有効と考える。 ・ (1) より 0^1 = 0 ・ p > 0, q > 0 で考えて (2),(3) より p > 0 に対し 0^p = 0 未知の値を (2) で求めるには、左辺の a^p として求める方法と、右辺として求める方法が考えられる。 前者の場合 q > 0, p > -q とすると 0^p × 0 = 0 が得られるが、この式から 0^p は求められない。 後者の場合 q > 0, p = -q とすると 0^p × 0 = 0^0 が得られるが、0^p が未知なので、この式から 0^0 は求められない。 よって、既知の 0^p から 0^0 を求める方法は存在しない。 また、q = 0 として 0^p 0^0 = 0^p が得られるが、p > 0 に対し 0^p = 0 であるから、この式は 0^0 が何であっても成立する。 さて、ここまでの結果により、0^0 を求めるには 0^0 = 定数 という形の規則が新たに必要なことが分かった。 ここからはこの式を求めるために a^-1 ≠ 0 を前提として考える。 ただし、これを指数関数の定義に加えるという意味ではなく、通常の数学なら成立すべき条件であるから、結果の判定に利用するのである。 a^0 に対し、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 a^0 = 0 とするなら a^1 a^0 = a^1 から a = a^1 = 0 でなければならないが、また同時に a^p a^0 = a^p から p = -1 を含めて a^p = 0 となり、これは前提に反する。 同様の結果は、連立方程式 a^-1 a^1 = a^0 a^-1 a^0 = a^-1 において a^1 = 0 とした場合にも生じる(これが未知数が2つ以上の指数法則を無効とする理由である)。 a^0 = 1 とするなら a^p a^0 = a^p は常に成立する。 この場合 0^-1 × 0 = 1 となる必要があるが、これは 0^-1 が実数ではない(=未定義)ことを示している。 以上により、求めていた規則は (4) 0^0 = 1 あるいは a^0 = 1 であることが証明された。 -- ここまで -- ところで、勘違いしないように付け加えておくと、これは既存の定義から 0^0 = 1 と証明したのではない。 0^0 を求められるように規則を変えるなら 0^0 = 1 でなければならないという証明である。 ただし、(4) を付け加えるならば 0^0 において連続にはならない。 よって、(3) も同時に変更する必要が生じる。

  • a^0=1 の証明(改)

    以前質問し、そこで指摘された所を修正してみました。 間違えてる点があれば、さらに指摘してください。 -- ここから -- 指数関数は、以下の規則により定義されている。ただし、底と指数及び値域は実数とする。 (1) a^1 = a (2) a^p a^q = a^(p+q) (3) 連続関数である ※定義域は、(3) が満たされる範囲により決定される。 まず、p ≠ 0 での 0^p と 0^0 の関係を確認しておく。 後で述べる理由により (2) を無条件には使えないので、未知の値が1つの場合のみ有効と考える。 ・ (1) より 0^1 = 0 ・ p > 0, q > 0 で考えて (2),(3) より p > 0 に対し 0^p = 0 未知の値を (2) で求めるには、左辺の a^p として求める方法と、右辺として求める方法が考えられる。 前者の場合 q > 0, p > -q とすると 0^p × 0 = 0 が得られるが、この式から 0^p は求められない。 後者の場合 q > 0, p = -q とすると 0^p × 0 = 0^0 が得られるが、0^p が未知なので、この式から 0^0 は求められない。 よって、既知の 0^p から 0^0 を求める方法は存在しない。 また、q = 0 として 0^p 0^0 = 0^p が得られるが、p > 0 に対し 0^p = 0 であるから、この式は 0^0 が何であっても成立する。 さて、ここまでの結果により、0^0 を求めるには 0^0 = 定数 という形の規則が新たに必要なことが分かった。 ここからはこの式を求めるために a^-1 ≠ 0 を前提として考える。 ただし、これを指数関数の定義に加えるという意味ではなく、通常の数学なら成立すべき条件であるから、結果の判定に利用するのである。 a^0 に対し、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 a^0 = 0 とするなら a^1 a^0 = a^1 から a = a^1 = 0 でなければならないが、また同時に a^p a^0 = a^p から p = -1 を含めて a^p = 0 となり、これは前提に反する。 同様の結果は、連立方程式 a^-1 a^1 = a^0 a^-1 a^0 = a^-1 において a^1 = 0 とした場合にも生じる(これが未知数が2つ以上の指数法則を無効とする理由である)。 a^0 = 1 とするなら a^p a^0 = a^p は常に成立する。 この場合 0^-1 × 0 = 1 となる必要があるが、これは 0^-1 が実数ではない(=未定義)ことを示している。 以上により、求めていた規則は (4) 0^0 = 1 あるいは a^0 = 1 であることが証明された。 -- ここまで -- ところで、勘違いしないように付け加えておくと、これは既存の定義から 0^0 = 1 と証明したのではない。 0^0 を求められるように規則を変えるなら 0^0 = 1 でなければならないという証明である。 ただし、(4) を付け加えるならば 0^0 において連続にはならない。 よって、(3) も同時に変更する必要が生じる。

  • a^0=1 の証明(改)

    以前質問し、そこで指摘された所を修正してみました。 間違えてる点があれば、さらに指摘してください。 -- ここから -- 指数関数は、以下の規則により定義されている。ただし、底と指数及び値域は実数とする。 (1) a^1 = a (2) a^p a^q = a^(p+q) (3) 連続関数である ※定義域は、(3) が満たされる範囲により決定される。 まず、p ≠ 0 での 0^p と 0^0 の関係を確認しておく。 後で述べる理由により (2) を無条件には使えないので、未知の値が1つの場合のみ有効と考える。 ・ (1) より 0^1 = 0 ・ p > 0, q > 0 で考えて (2),(3) より p > 0 に対し 0^p = 0 未知の値を (2) で求めるには、左辺の a^p として求める方法と、右辺として求める方法が考えられる。 前者の場合 q > 0, p > -q とすると 0^p × 0 = 0 が得られるが、この式から 0^p は求められない。 後者の場合 q > 0, p = -q とすると 0^p × 0 = 0^0 が得られるが、0^p が未知なので、この式から 0^0 は求められない。 よって、既知の 0^p から 0^0 を求める方法は存在しない。 また、q = 0 として 0^p 0^0 = 0^p が得られるが、p > 0 に対し 0^p = 0 であるから、この式は 0^0 が何であっても成立する。 さて、ここまでの結果により、0^0 を求めるには 0^0 = 定数 という形の規則が新たに必要なことが分かった。 ここからはこの式を求めるために a^-1 ≠ 0 を前提として考える。 ただし、これを指数関数の定義に加えるという意味ではなく、通常の数学なら成立すべき条件であるから、結果の判定に利用するのである。 a^0 に対し、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 a^0 = 0 とするなら a^1 a^0 = a^1 から a = a^1 = 0 でなければならないが、また同時に a^p a^0 = a^p から p = -1 を含めて a^p = 0 となり、これは前提に反する。 同様の結果は、連立方程式 a^-1 a^1 = a^0 a^-1 a^0 = a^-1 において a^1 = 0 とした場合にも生じる(これが未知数が2つ以上の指数法則を無効とする理由である)。 a^0 = 1 とするなら a^p a^0 = a^p は常に成立する。 この場合 0^-1 × 0 = 1 となる必要があるが、これは 0^-1 が実数ではない(=未定義)ことを示している。 以上により、求めていた規則は (4) 0^0 = 1 あるいは a^0 = 1 であることが証明された。 -- ここまで -- ところで、勘違いしないように付け加えておくと、これは既存の定義から 0^0 = 1 と証明したのではない。 0^0 を求められるように規則を変えるなら 0^0 = 1 でなければならないという証明である。 ただし、(4) を付け加えるならば 0^0 において連続にはならない。 よって、(3) も同時に変更する必要が生じる。

  • a^0=1 の証明(改)

    以前質問し、そこで指摘された所を修正してみました。 間違えてる点があれば、さらに指摘してください。 -- ここから -- 指数関数は、以下の規則により定義されている。ただし、底と指数及び値域は実数とする。 (1) a^1 = a (2) a^p a^q = a^(p+q) (3) 連続関数である ※定義域は、(3) が満たされる範囲により決定される。 まず、p ≠ 0 での 0^p と 0^0 の関係を確認しておく。 後で述べる理由により (2) を無条件には使えないので、未知の値が1つの場合のみ有効と考える。 ・ (1) より 0^1 = 0 ・ p > 0, q > 0 で考えて (2),(3) より p > 0 に対し 0^p = 0 未知の値を (2) で求めるには、左辺の a^p として求める方法と、右辺として求める方法が考えられる。 前者の場合 q > 0, p > -q とすると 0^p × 0 = 0 が得られるが、この式から 0^p は求められない。 後者の場合 q > 0, p = -q とすると 0^p × 0 = 0^0 が得られるが、0^p が未知なので、この式から 0^0 は求められない。 よって、既知の 0^p から 0^0 を求める方法は存在しない。 また、q = 0 として 0^p 0^0 = 0^p が得られるが、p > 0 に対し 0^p = 0 であるから、この式は 0^0 が何であっても成立する。 さて、ここまでの結果により、0^0 を求めるには 0^0 = 定数 という形の規則が新たに必要なことが分かった。 ここからはこの式を求めるために a^-1 ≠ 0 を前提として考える。 ただし、これを指数関数の定義に加えるという意味ではなく、通常の数学なら成立すべき条件であるから、結果の判定に利用するのである。 a^0 に対し、次の関係式が成り立つ。 a^0 a^0 = a^0 より a^0 (a^0 - 1) = 0 よって、a^0 は 0 または 1 である。 a^0 = 0 とするなら a^1 a^0 = a^1 から a = a^1 = 0 でなければならないが、また同時に a^p a^0 = a^p から p = -1 を含めて a^p = 0 となり、これは前提に反する。 同様の結果は、連立方程式 a^-1 a^1 = a^0 a^-1 a^0 = a^-1 において a^1 = 0 とした場合にも生じる(これが未知数が2つ以上の指数法則を無効とする理由である)。 a^0 = 1 とするなら a^p a^0 = a^p は常に成立する。 この場合 0^-1 × 0 = 1 となる必要があるが、これは 0^-1 が実数ではない(=未定義)ことを示している。 以上により、求めていた規則は (4) 0^0 = 1 あるいは a^0 = 1 であることが証明された。 -- ここまで -- ところで、勘違いしないように付け加えておくと、これは既存の定義から 0^0 = 1 と証明したのではない。 0^0 を求められるように規則を変えるなら 0^0 = 1 でなければならないという証明である。 ただし、(4) を付け加えるならば 0^0 において連続にはならない。 よって、(3) も同時に変更する必要が生じる。

  • 微分する、とは?

    こんにちは 突然ですが、「微分する」、とはどのようなことなのでしょうか? 微分方法は分かるのですが、微分することによって何がどうなるのかがイメージできません。 辞書で調べてみると、微分とは「ある関数の導関数を求めること」と書かれています。 今度は導関数を調べてみると、「関数f(x)を微分して得られる関数f'(x)を、もとの関数の導関数という」と書かれています。 要は、導関数とは「関数f'(x)」のことでしょうか。 では、微分しこの導関数を求めることによって、何がどうなるのでしょうか? 何のために求めるのでしょうか? 私は数学にはあまり詳しくありません。(数IIに関する知識も殆ど忘れてしまっています;) ですので、出来ましたら端的にわかり易くご説明していただけると、とても助かります。 お手数ですが、よろしくお願いします。

  • 積の微分の公式 (dfdg/dx)=0?

    y=f(x)×g(x)の微分は,(dy/dx)=(df/dx)g+f(dg/dx)だと思います。(微分そのまま+そのまま微分)と暗記しました。この公式の証明として,次のような説明を見付けました。 (y+dy)=fg+gdf+fdg+dgdf y=fgより dy=gdf+fdg+dgdf 両辺をdxで割ると (dy/dx)=g(df/dx)+f(dg/dx)+(dgdf/dx) よって,微分そのまま+そのまま微分が成り立つ。(右辺第3項 dgdf/dxですが,dgdfは微少量同士のかけ算ですから無視しているようです。) 質問1 右辺第3項は無視しても良いのでしょうか。 次に,右辺第3項を無視したまま,上記の式をxで積分したときに元に戻るかどうか試しました。 y=fgより,f=y/g g=y/f (dy/dx)=(y/f)(df/dx)+(y/g)(dg/dx) 積分記号(1/y)dy=積分記号(1/f)df+積分記号(1/g)dg log|y|=log|f|+log|g| log|y|=log|fg| y=fg  となり,元の原関数が導けました。 質問2 右辺第3項を無視したままxで積分して元に戻るかどうか試したのですが,元に戻りました。 私のした積分の計算はあっているのでしょうか。(右辺第3項を無視したまま計算を始めたことが気になります。)

  • 明示的な掛け算と暗示的な掛け算はどちらが優先されま

    6÷2(1+2)=

  • 【数学】確率と割合

    (問題) わが国の出生男児数は、どの年次も出生総児数の約0.51の割合です。 このことから、男児の生まれる確率は1/2であるといえますか。 理由とともに答えなさい。 上は中学二年生の数学(確率)の問題なのですが、この問題の解説を読んでもよく理解できないので質問させて頂きます。 上の問題の答えは、「男児の生まれる割合はどの年次も0.51で一定なので、男児の生まれる確率は1/2とはいえない」となっているのですが、どうしてこのような答えになるのでしょうか? 割合が0.51なら1/2の確率だといっていいものだと思ったのですが・・・。 どなたか、分かりやすい説明をお願いします。

  • サイコロを振り続けると

    一般的な6面のサイコロを振り続けていれば、いつかは『必ず』1の面が出ますか?

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 地球と立体

    地球を切頂二十面体で表現する方法を知りたいです! それぞれの頂点を緯度と経度で知る方法は無いでしょか……

    • ベストアンサー
    • noname#249334
    • 数学・算数
    • 回答数2
  • 集合の問題です

    集合Aから集合Bへの写像fについて、Bの各要素yについてf(x)=y となるAの要素xが必ずある場合に、fをAからBの上への写像とよぶ。 たとえば、A={1,2,3,4,5}、B={a,b}のとき、f(1)=f(2)=f(5)=a , f(3)=f(4)=b とする 写像fはAからBの上への写像であるが、g(1)=g(2)=g(3)=g(5)=bとする写像gはg(x)=aとなるA要素xがないので、AからBの上への写像ではない。 問1 {1,2,3,4,5}から{a,b}への写像は全部で何個ありますか。 問2 {1,2,3,4,5}から{a}の上への写像は全部で何個あるか。また{1,2,3,4,5}から{b}の上への写像は全部で何個あるか。 問3 {1,2,3,4,5}から{a,b}の上への写像は全部で何個あるか 宜しくお願いします

  • なぜ減点なのか。

     こんにちは。  最大値または最小値があれば求めよ。 とか、極値があれば求めよ。 とあり、    ないから、 最大値5(x=1) で終わらせた。 また、    極値が増減表かいて極値がないので、 あれば求めよ、だからないから何も書かなかったら減点された。 これでいいの?  書かなくていいのではないでしょうか?

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 不等式について、何故逆になるのか

    a<bの時の大小関係です。 4a,4bでは<のままなのはわかるのですが -6a,-6bなどでは>と逆に表わされるのは何故なんでしょうか? -3y>30 これの解が逆になるのもわかりません。 しっくりこなくて困っています。 どのように理解すればいいでしょうか???

  • 不等式について、何故逆になるのか

    a<bの時の大小関係です。 4a,4bでは<のままなのはわかるのですが -6a,-6bなどでは>と逆に表わされるのは何故なんでしょうか? -3y>30 これの解が逆になるのもわかりません。 しっくりこなくて困っています。 どのように理解すればいいでしょうか???