数学 場合の数

このQ&Aのポイント
  • 数学の場合の数についての質問です。
  • 6個の球が入った箱から3個の球を取り出す場合、条件に応じた通り数を求める問題です。
  • X,Y,Zの値によって通り数が変わる場合についての詳しい解説をお願いします。
回答を見る
  • ベストアンサー

数学 場合の数

どなたか数学得意な方解答をお願いします。過去問と解いていて解答がありません。 1から6までの数字がそれぞれ1つずつ書かれている球が6個入った箱がある。この箱から3個の球を取り出し、書かれた数字の大きい順にX,Y,Zとするとき、次の問いに答えよ。 (1)X,Y,Zがすべて4以下である場合は何通りか   自分の解答 4C3=4(通り) (2)X,Y,Zがすげて5以下である場合は何通りか   自分の解答 5C3=10(通り) (3)X=5である場合は何通りか (4)Y=2である場合は何通りか (1)(2)は答えあってると思いますが、(3)(4)がどうやって答えをだしたらいいのか分かりません。 詳しく解説していただけると助かります。

質問者が選んだベストアンサー

  • ベストアンサー
  • DJ-Potato
  • ベストアンサー率36% (692/1917)
回答No.2

(1)1・2・3・4の中から3つ選ぶ 321 421 431 432 (2)1・2・3・4・5の中から3つ選ぶ 321 421 431 432 521 531 541 532 542 543 (3)X=5は固定 1・2・3・4の中から2つ選ぶ 521 531 541 532 542 543 (4)Y=2ならZ=1 3・4・5・6の中から1つ選ぶ 621 521 421 321 でどうでしょう?

kpanpan
質問者

お礼

とても分かりやすかったです。 助かりました。ありがとうございます。

その他の回答 (3)

  • notnot
  • ベストアンサー率47% (4848/10262)
回答No.4

(1)(2)合ってます。 (3)これは下記と同じ事ですね。 「Y,Zがすべて4以下である場合は何通りか」 ・・・4C2通り (4)Xは6,5,4,3のいずれかでZは1ということになるので、4通り

kpanpan
質問者

お礼

早速ありがとうございました。

  • asuncion
  • ベストアンサー率33% (2126/6288)
回答No.3

自分の答えがありゃりゃでしたね。これは失敗、失敗。 最大値がちょうど4のことだと勘違い。

kpanpan
質問者

お礼

早速ありがとうございました。

  • asuncion
  • ベストアンサー率33% (2126/6288)
回答No.1

>(1)X,Y,Zがすべて4以下である場合は何通りか >  自分の解答 4C3=4(通り) 具体的に列挙してみましょうか。 4、3、2 4、3、1 4、2、1 ありゃりゃ?

関連するQ&A

  • 数学A 場合の数・順列の質問です。

    問題を解いていて行き詰った部分なのでどなたかご回答お願いします。 壱 a,b,c,d,e,fの6人の走順を定めるとき、aがbより先に、bはcより先に走る場合は何通りか。 弐 3桁の整数nの百の位、十の位、一の位の数字をそれぞれx,y,z,とするとき、次の条件を満たす    整数は何個あるか。    (1)x>y≧z                         (2)x≧y≧z 参 a,a,a,b,b,c,d,の7文字から4文字選んで1列に並べるとき、次の並べ方は何通りあるか。    (1)3種類の文字を使って並べる            (2)並べ方の総数 肆 6個の玉を3つの箱に分けて入れる。どの箱にも少なくとも1個は入れるとき、次の場合について    玉の入れ方はそれぞれ何通りあるか。    (1)玉も箱も区別して考えた場合    (2)玉は区別するが、箱は区別しないで考えた場合    (3)玉は区別しないが、箱は区別して考えた場合 問題数が多く面倒かも しれませんが、よろしくお願いします。

  • 場合の数の考え方

    問題 赤玉3個、白玉3個、黒玉2個、計7個の玉が入った箱からA,B,Cの三人が順にそれぞれ2個ずつ玉を取り出す(取り出した玉は箱に戻さない) (1)A,B,C三人がそれぞれ異なる色の玉を取り出す確率を求めよ まず異なる色の取り出し方が (ⅰ)赤黒・赤白・黒白 (ⅱ)赤白(x)・赤白(z)・赤黒 (ⅲ)赤黒・赤黒・赤白 の3パターン。(後に説明で使うのでx、zとおいておきます) (ⅰ)について (3×2)×(2×2)×(1×1)=24通り A,B,Cがどの取り方(赤黒・赤白・黒白)をするかによって3!通り。よって24×6=144通り そして問題は(ⅱ)の計算なんですが、僕はこう計算してしまいます。 (3×2)×(2×1)×(1×2)=24通り 同じようにA,B,Cがどの取り方をするかで考えるが、同じ赤白(上記x、zのこと)でもそれぞれの玉は区別して考えるとしたので、結局は違うもの。よって(ⅰ)同様に3!通り考えられる(→×)したがって24×6=144通り 多分原因は(3×2)×(2×1)×(1×2)と考えた時点でもうx、zの逆パターンまで数え上げてる、ということだと思います。つまりどの取り方をするかで考えるのは3!/2!=3通り。ゆえに24×3=72通り。ただなんとなくそうだなって思えるくらいであまり理解しているとは思えません。 ちなみに解答では{(3×2)×(2×1)}÷2×(1×2)×3!としていましたが、頭が固いのでちょっと分かりにくいです。 前述しましたがよくこの手の問題(赤・白・黒のカードが1枚・2枚・3枚あり、この6枚のカードをA,B,Cの箱の無作為に2枚ずついれる...など)でよく場合の数の求め方で止まってしまいます。 一番理解したいのは上で間違った計算をした部分についてですが、他にもアドバイス(確率全般について)があればどんなことでもいいのでよろしくお願いします!!

  • 5-8 高校数学 場合の数

    nを正の整数とし,n個のボールを3つの箱に分けて入れる問題を考える、ただし1個のボールも入らない箱があってもよいとする 以下に述べる4つの場合について、それぞれ相異なる入れ方の総数を求めたい (1)1からnまで異なる番号のついたn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (2)互いに区別のつかないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (3)1からnまで異なる番号のついたn個のボールを区別のつかない3つの箱に入れる場合その入れ方は全部で何通りあるか (4)nが6の倍数6mであるときn個の互いに区別のつかないボールを区別のつかない3つの箱に入れる場合その入れ方は何通りあるか 解説(1)は3^n通り (2)は[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように三分割する n個とも1箱だけにいれるもの・・・x通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では 3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがって x×3+(y+z)×6=3^nよって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6={3^(n-1)+1}/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)としa=b=cをみたすもの・・p通り a=b<c or a<b=cをみたすもの・・q通り a<b<cをみたすもの・・r通り すると(2)の場合の数はp+3q+6r通りと数えられるからp+3q+6r=(n^2+3n+2)/2・・・(2) ここでp=1であり、またq通りは(0,0,6m),(1,1,6m-2),・・・、(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通り を除いてq=3mである  よって(2)からr=1/6×{(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り とあるのですが (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません

  • 5-8 高校数学 場合の数

    nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える ただし1個のボールも入らない箱があってもよいものとする 以下に述べる4つの場合についてそれぞれ相異なる入とれ方の総数を求めたい (1)1からnまで異なる番号の付いたn個のボールをA,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか (2)互いに区別の付かないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は全部で何通りあるか (3)1からnまで異なる番号の付いたn個のボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (4)nが6の倍数6mであるとき、n個の互いに区別の付かないボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (解説) (1)3^n (2)A,B,Cにそれぞれa,b,c個入るとしてa+b+c=n(a>=0,b>=0,c>=0)(1) をみたす整数解(a,b,c)の個数を求めればよいが、(1)は(a+1)+(b+1)+(c+1)=n+3 (a+1>=1,b+1>=1,c+1>=1) と同値であることに着目して[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように3分割する nことも1箱だけに入れるもの...x通り n個を2箱に分散して入れるもの...y通り n個を3箱に分散して入れるもの...z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがってx×3+(y+z)×6=3^n(x=1) よって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6=(3^(n-1)+1)/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)とし(3)と同様に求める場合の数を次のように3分割する a=b=cをみたすもの...p通り a=b<c or a<b=cをみたすもの...q通り a<b<cをみたすもの...r通り すると(2)の場合の数はp+3q+6r通りと数えられるから p+3q+6r=(n^2+3n+2)/2(2) ここでp=1であり、またq通りは(0,0,6m)(1,1,6m-2)....(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通りを除いてq=3mである、よって(2)から r=1/6×{1/2×(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り の (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません を質問したら (3) n個とも1箱だけにいれるもの・・・x通り これが(1)の数え方なら3通りあり、(3)の形では1通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り yとzの数は同じ考え方で計算できるという意味で同じです。 例(6,2,1)(6,1,2)(1,6,2)(1,2,6)(2,6,1)(2,1,6) は全て同じものとして考えられますが、同様にして (6,3,0)(6,0,3)(0,6,3)(0,3,6)(3,6,0)(3,0,6) となりこの両者は同じものです。この両者は同じですから分けて考えるのではなく、同じものとして(y+z)を求めた方が楽 xとy,zの違いは一番多く入った箱以外の二つの箱を区別するかどうかだけです。 便宜的に箱をABCと名前をつけると、(1)の結果から3^n通あり ここからどれか一つの箱にだけ入っている場合の3通りを引くと(3^n-3)になります。この箱の名前を付け替えるとすればA→3通り、B→2通り、Cは残り、と3!通りあるはずです。 したがって、x+y+z = 1 + (3^n-3)÷3! (4) まずa=b=c の時は1通りしかないのは問題ないでしょう。このとき、a=b=c=2mです。次にa=b<c or a<b=cをみたすもの・・q通り ですが、a=bのとき、a<cなのでaは0から2m-1までの2m通り、同様にb=cのときはbは2m+1から3mまでのm通りあるはずです。 a<b<cをみたすもの・・r通り a<b<cから、aは0~2m-1までの2m通りあるはずです。aとbが決まればcも決まるという関係上、aとbだけを考えればよいです ここでaが奇数のときはm通りあり a=2m-1の時、b+c=4m+1からbは2mの1通り a=2m-3の時、b+c=4m+3からbは2m-2~2m+1の4通り ・・・ a=1の時、b+c=6m-1からbは2~3m-1の(3m-2)通り よりΣ(3m-2)=3m(m+1)/2-2m通り 偶数のときも同様にm通りあり、(b=cとなるときを除外しなければならないのに注意) a=2m-2の時、b+c=4m+2からbは2m-1~2mの2通り a=2m-4の時、b+c=4m+4からbは2m-3~2m+1の5通り ・・・ a=0の時、b+c=6mからbは1~3m-1の(3m-1)通り よりΣ(3m-1)=3m(m+1)/2-m通り よって 3m(m+1)/2-2m + 3m(m+1)/2-m と回答して下さったのですが (3)でyとzが同じとあるのですが例えばn=6の時 箱が空の時(3,3,0),(3,0,3),(0,3,3)とあり箱に入る球がすべて違うとき(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)となり異なるのではないですか?同じと言うのが何故同じなのか分かりません 仮に(y+z)を求めるとして、 (3^n-3)になるのも分からないです (4)は偶数と奇数で分ける所ですが偶数だとb=cの場合があるから分ける必要があるとあるのですがb=cになると何故駄目なのでしょうか?

  • 場合の数です。

    ご多忙の中宜しくお願い致します。 18個の玉すべてを三つの袋A,B,C,に分けて入れる。このとき玉は区別しないとする。 また玉の入ってない袋があってもよいとする。 また袋A,B,C,に入れる玉の数をx、y、zとする。x>y>z≧0を満たす入れ方は何通りあるか? これが問題なんですが、 z=0としてx+y=18 (x、y、z)=(17,1,0)、(16,2、0)とこれを繰り返し(10、8、0) z=1として・・・ と数えていくしかないのでしょうか? 他にいい解法があればおしえてください。 答えは27とおりです。 よろしくお願い致します。

  • 場合の数の問題で解答と違うやり方をしました。

    場合の数の問題で解答と違うやり方をしました。 あっているか教えてください。 *問題* 1から5までの番号のついた箱がある。それぞれの箱に 赤、白、青の玉のうちどれか1個を入れるとき 入れ方は全部で何通りあるか。 ただし、どの色の玉も少なくとも1個はいれるものとする。 *解答* ==================== (赤の個数、白の個数、青の個数) =(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1) ==================== ここで、1から5の箱がそれぞれ 赤、白、青のどれかを考え 例えば(1,1,3)なら 赤が入っている箱…5C1 白が入っている箱…4C1 青が入っている箱…3C3 などとして以下同様に =で囲まれた6通りすべてやり150通り(答) *私の解答* =で囲まれた6つの場合について考えます。 1から5までの箱をこの順にならべて固定し 6つの場合それぞれについての順列を考えます。 例えば(1,1,3)のとき 赤1つ、白1つ、青3つの5つを 一列に並べるとすると (並べた順に左から1、2…と箱に入っていく) 5!/3!(青が3つあるので3!でわる) 以下同様にすると150通り(答) となります。

  • 場合の数

    x+y+z≦20を満たす自然数の組は何通りか?の問題です。 和は3~20までの整数なのでそれぞれの場合の数を、3の場合は1通り、4の場合は3C2,5の場合は4C2、、、、20の場合は19C2、すべて足して1140通りと考えましたが、解答にはx+y+z+k=21を満たす自然数x、y、z、kの組に等しいので20C3=1140とあります。x+y+z+k=21を満たす自然数x、y、z、kの組に等しくなる理由がわかりません。よろしくお願いいたします。

  • 数学 場合の数・確立

    数学得意な方解答お願いします。過去問を解いており解答がありません。 赤玉1個、白玉2個から玉を1個取り出してもとにもどす。この試行を3回繰り返す。このとき赤玉の出る回数をXとする。次の問いに答えよ。 (1)Xがとりうる値は全部で何通りあるか。 (2)X=0となる確立を求めよ (3)X=1となる確立を求めよ (4)Xの期待値を求めよ 基本の勉強はしましたが、できるだけ詳しく解答いただけると助かります。

  • 数学 場合の数、確率

    場合の数、確率の問題 区別できない8つの玉がある。これを次のように3つの箱に分ける方法はそれぞれ何通りあるか。ただし、1個も入らない箱があってもよい。 (1)3つの箱に区別がないとき (2)3つの箱に区別があるとき (1)で、区別がないので書きだして10通りというのは模範解答にあり、意味も分かりました。 これを使って(2)は、書きだしたそれぞれの入れ方の並べ替え(たとえば 8,0,0 なら3通り)として、総和が45だから45通り これもわかるんですが、この(2)を最初解いたとき、3^8としました。 全然違うのですが、なぜ違うのかが分かりません。 教えてください。 ここから別の問題です。 箱の中に白球、赤球、黒玉がそれぞれ2個ずつ入っている。この箱から1個ずつ球を取り出す操作を何回行い、すべての色の球が取り出されたときに捜査を終了する。 一度取り出した球は箱に戻さないとして、次の問いに答えよ。 (1)4回で操作を終了する確率 (2)5回で操作を終了する確率 (1)の考え方として 4回で操作終了ということは、最初の3回のうちに同じ色の球を2個取るわけです。 2個取る球を色で場合分けしました。 分母 6個の球から3個の球を取り出す方法は6C3だから分母は6C3 分子 同じ球を2個取るのは1通り、残り4つの球から1つ取るから4通り、これらの並べ替えがあるから掛ける3 よって分子は 1*4*3 最後に残り3つの球から上の二色以外の球を取るから2/3を掛ける。 そして、上で求めた確率が色の場合分けより3通りあるから3を掛ける。 としました。 しかし、違いました。 この問題の答えは2/5となるのですが、上のやり方ではなりません。 分子を求めたときに「これらの並べ替えがあるから掛ける3」と書きましたが、これがないと2/5になります。 分かりません。教えてください。 (2)に関しては後ほど捕捉します。

  • 高1数学(場合の数) 

    進研模試の数学の過去問です。1問だけでもいいので、わかる方は解説願います。 Q1 色の異なる7個の球とA,B,Cの3つの箱があります。 7個の球のうち、5個には1という数が、残りの2個には2という数が書かれています。 7個の球を箱に入れたとき、箱Aにいれた球に書かれている数の和をa、 箱Bに入れた球に書かれている数の和をb、箱Cにいれた球に書かれている数の和をcとするとき、 aもbもcも3になる入れ方は何通りありますか。 Q2 Q1のときa>b>cとなる球の入れ方は何通りありますか。 ただし、どの箱にも1個以上3個以下の球を入れる。 Q3  縦4マス、横3マスの計12個のマスをもつ図形があり、 12個のますのうち4個のますを選んで○印をつける。 ○をつけた横隣に○を付けてはいけないとき、○の付け方は何通りあるか。 Q4 A、K、I、N、O、H、Iの7個の文字を1列に並べる。 K、N、Hがこの順にあるような並び方は420通りあるが、これに加えて、 K、N、Hの少なくとも2つが連続する並べ方は何通りあるか? Q1の答は120通り、Q2は110通り、Q3は195通り、Q4は300通りです。 どうやったら、この答えが導けるか解説願います。 長文すみません。