• ベストアンサー

N705 vs N-04A

現在、N705iホワイトを使用しているのですが、N-04Aのブラウンかホワイトに機種変更しようかどうか迷っています。 N705iとN-04A、どちらがamadanaっぽいと思いますか? どちらがセンスがいいと思いますか? 現時点では、N705iに飽きてきているということもあってN-04Aにかなり傾いてます。

noname#112064
noname#112064
  • docomo
  • 回答数1
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 9821xa13
  • ベストアンサー率62% (166/266)
回答No.1

どちらが良いかは個人の趣味がありますのでお答えしかねます。 懐具合に問題が無いのなら機種変更(買い増し)して、やっぱりN705の方が良いと思えばSIMカードを差し替えてN705を使えば良いと思います。

関連するQ&A

  • a[1]=3,4a[n+1]=12a[n]-2×{3^(n-1)}×n

    a[1]=3,4a[n+1]=12a[n]-2×{3^(n-1)}×n+3^(n-1) で、 Σa[k](k=1~n)を最大にするnの最小を求めよ。 まず、一般項a[n]=-3^(n-2){n^2-2n-3)/4 を求めました。 このあとΣの値を求められません。 よろしくお願いします。

  • N251i、N251is、N252iで迷っています

    母(68歳)は現在N503iを使用しています。 メールを自分で作成して送受信は問題なくできます。ですが、カメラ付携帯が欲しくなったそうです。 この携帯自体は1年半ほど使っていますが途中で名義変更をした関係であと半年くらい機種変更はできません(するとなると6万円程度かかるそうです)。 そこで、オークションで白ロムを購入することにしました。 ・カメラ付 ・ドコモ、Nシリーズ(番号を変えたくないのと、同じNシリーズのほうが操作の戸惑いが少ないと思われるので) ・アプリ不要(503iにアプリがついていましたが、これはアプリが使いたいからではなく、私と同じ機種にすれば私が教える際の手間が省けるから購入したまでです) ・mova(サイト閲覧はしないので。) この条件に合う機種でN251i、N251is、N252iの3つが残りました。 N503iからの移行で一番操作的に馴染みやすいのはどの機種になるでしょうか。 また、使用感なども教えてください。 なお、カメラ画像は携帯同士で送り合うだけなので画素数は低くても問題ないようです。 よろしくお願いします。

  •  a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,

     a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,3・・)に対して、次の問題に答えよ。 (1) a^2_(n+1) - a^2_n = a_n - a_(n-1) が成り立つことを示し、数列{a_n}が単調数列であることを示せ (2) a_n<2 となることを示せ (3) lim a_n (n→∞)を求めよ 以前に質問して答えていただいたのですが、(3)が、理解できませんでした。(3)から、途中式も詳しく教えてください。よろしくお願いします。

  • (Σa_n・x^n)^m

    mを自然数として(Σ[n=0↑∞]a_n・x^n)^mが収束する場合にこれをべき級数で表した時のx^kの係数の計算の仕方がよくわかりません。a_nやxは実数とします。 Σ[n=0↑∞]Σ[n=n_1+n_2+…+n_m]a_n_1・a_n_2・…・a_n_m・x^nとして a_n_1・a_n_2・…・a_n_m=a_0^i_0・a_1^i_1・…・a_j^i_j・… と表すと有限個のjについてi_j>0でΣ[j=0↑∞]i_j=mであってnを固定するとこの係数をもつ項がm!/(i_1!・i_2!・…・i_n!)個あると考えればいいのかと思ったのですがこの推論は間違っているようです。 別のやり方としてx=0でのk次微分係数を計算してk!で割ればいいと思ったのですが具体的な計算ができませんでした。

  • a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,

    a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,)のときの lim(n→∞)a_n をもとめよ。 途中し式も詳しく教えてください

  • n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a

    n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a^1)^2+・・・+(a^n+1)^2=1}が可微分多様体の構造をもつことを示せ。 という問題で、証明の中でいくつかわからないところがあります。わからない部分を≪≫で書きます。 証明)Vi^+={(a^1,・・・,a^n+1)∈S^n|ai<0}    Vi^-={(a^1,・・・,a^n+1)∈S^n|ai>0} (i=1,・・・,n+1) とおくと ≪これらはS^nの開集合でありS^nを覆っている。≫←この部分は当たり前に言えてしまうのでしょうか? ≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫←何故、同相であることを示すのでしょうか? 写像φi:Vi^+→E^n  φi^-1:E^n→Vi^+を実際に移していく。 この後は何とかわかるのですが最初の方の疑問をどなたかお願いします。

  • lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束

    こんにちは。 [問] lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束する事を示せ。 [証] |a_nx^n|≦|a_nr^n| (∵x<r) 且つ (Σ[n=1..∞]|a_nr^n|=)Σ[n=1..∞]|a_n|r^nが収束。 が言えれば Weierstrassの一様収束の定理「∀x∈I(Iは区間)|a_k(x)|≦c_k且つΣ[k=1..∞]c_kが収束 ⇒Σ[k=1..∞]a_k(x)はIで一様且つ絶対収束する」 が使えて Σ[n=1..∞]a_nx^nは一様収束する。 と示せるのですが「Σ[n=1..∞]|a_n|r^nが収束」がどうしても言えません。 どうすれば「Σ[n=1..∞]|a_n|r^nが収束」が言えますでしょうか? lim[n→∞]|a_n|^(1/n)=1(収束半径は1)からは「Σ[n=1..∞]a_nr^nが収束」しか言えませんよね。

  • N-02AのMUSIC

    最近D905iからN-02Aに機種変しました。 D905iで使用していたminiSDをN-02Aでも使おうと思いましたが、 D905iで聞いていた音楽が N-02AのMUSICでは 《移行可能コンテンツ》の初期フォルダというのに入っていて、聞くことさえできません。 機種によっては聞くことができないというのはわかりますが、 ダウンロードしたサイトもバラバラですし、全て聞けないことはないと思いまして… わかる方がおられましたら解答お願い致しますm(__)m

  • 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている

    数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 (2) P_n=1/a_1×a_2×a_3・・・×a_nと置く時 log_2×P_100=[か]+2^[き] となるのでP_100は[く]となる かきくを求めよ チャート式で調べてもわかりません><解法と解答を教えてください

  • 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。

    数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 数列{a_n}がa_1=1、a_n+1=√a_n/2(n=1、2、3・・・)で定義されている。 (1) b_n=log_2×a_nと置く時、b_n+1=[あ]/[い](b_n-[う])となり b_n=2^[え]-n ー[お] となる。 あいうえおを求めよ。 (2) P_n=1/a_1×a_2×a_3・・・×a_nと置く時 log_2×P_100=[か]+2^[き] となるのでP_100は[く]となる かきくを求めよ チャート式で調べてもわかりません><解法と解答を教えてください