ベストアンサー 数学の命題(距離空間の集合) 2009/05/10 01:57 数学の質問です。次の命題が「間違いであること」証明してください。 平面内の部分集合A1,A2,A3,…(無限個)が全て開集合ならば,それら全てに共通な点の集合もまた開集合である. お願いします. みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー rabbit_cat ベストアンサー率40% (829/2062) 2009/05/10 02:01 回答No.1 例えば、 An:原点中心半径1+1/nの円の内部(境界含まず) とすると、 これら全ての共通部分は、 半径1の円の内部(境界含む) になります。 ちゃんとした証明は自分でやってみてください。 質問者 お礼 2009/05/10 02:28 おぉー!これはいい例ですね.とても分かりやすかったです. ありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の命題(距離空間の集合) 数学の質問です。次の命題を証明してください。 距離空間の勝手な開集合は(無限個も含め)いくつかの開円板の和集合として表せる. よろしくお願いします. 数学の命題の問題です。 数学の命題の問題です。 次の命題を論理式で書き、真偽を調べよ。さらに、その証明を与えよ。 ここでは、Xは空でない普遍集合とし、P(A)はAのべき集合をあらわす。 「Xの部分集合Aに対してP(A∪B)=P(A)∪P(B)となるXの部分集合Bが存在する」 回答よろしくお願いします。 公理的集合論で、ある命題を証明? 選択公理を導入すると、下記の命題(1)が証明できるそうです。(Wikipediaの選択公理の記述) 命題(1):任意の二つの集合 A,B について、A から B への単射があるか、または B から A への単射がある。 素人丸出しの例題で恐縮ですが、上記の命題(1)で、任意の集合として以下を選びます。 集合A:原子の名前を要素とする集合とする。 集合B:地球上の国名を要素とする集合とする。 この場合、AからBへの単射もないし、BからAへの単射もなく、命題(1)が偽であるように思えます。 選択公理を用いると証明できるとされる命題(1)は、何を意味しているのでしょうか。 数学の素人にもわかる簡単な例で命題(1)の意味をご説明いただけると助かります。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 全ての命題を含む集合は無限集合ですか? 言語は、とくに言語の中の語彙に注目すると有限です。 したがって、言語がいくら発展しても語彙が無限になることはできません。 また、言語の種類も有限です。 したがって、語彙は有限です。 そこで、語彙+記号で構成される平叙文(これを命題とします)は有限と考えてよいでしょうか。 全ての命題を含む集合が有限集合ということになれば、「学問は有限である」と言ってよいでしょうか? 学問の「大きさ」を、その学問で検討される命題の数で推し量ろうという考えは妥当でしょうか? 数学や哲学、論理学に精通した識者の方より、お考えをお聞かせいただきたくお願い申し上げます。 有限集合を無限に直積した集合の濃度は? 有限集合Aがあったとして、A×A×A×・・・と加算無限回直積させたら濃度はどうなりますか? 直感では加算無限個になると思うのですが、証明する方法が思いつかないので教えてください もし言葉や記号に間違いがあったら教えてください、補足します 集合の問題です。 直積集合の問題です。 次の命題を証明したいのですが…教えてください!! 命題:AをXの部分集合、BをYの部分集合とすれば、等式 (X×Y)-(A×B)=((X-A)×Y)∪(X×(Y-B)) が成り立つ。 この証明をしてください。お願いします!! 無理数に関するこの命題は証明されているでしょうか? 無理数に関して,以下の2つの命題は証明されているでしょうか? ご存じの方,教えて下さい.記述を正確にするために,定義から書きます. 定義(1): 十進法で表示した無限数列において,十進法の数字 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 のすべてが現れる無限数列を「全域無限数列」と仮に呼ぶことにします.■ 定義(2): 全域無限数列でない無限数列を「非全域無限数列」と仮に呼ぶことにします.■ 無理数を無限数列と考えることにして,次の命題は真でしょうか? 命題(A): 無理数は,すべて全域無限数列である.■ 命題(B): 非全域無限数列となる無理数が存在する.■ 命題(A)は正しそうな気がします.しかし,命題(B)は偽(正しくない)のような気がするのですが,命題(A),命題(B)に相当する定理はあるのでしょうか? お分かりの方,教えて下さい. 無意味に真な命題に関して 数学と論理学に絡んだ質問です。 1=1⇒素数は無限に存在する という命題は 数学的に「1=1」は真、「素数は無限に存在する」は真なので命題も真になるはずです。 しかし、あるところによれば、これは「無意味に真な命題」となっていると記述されています。もちろん、この命題が数学における証明に使えないのはもちろん理解できます。 では、数学において、どのような基準で意味があるかないかを判断するのか教えて下さい。その基準に公理などが関係ある場合はとくに明記していだだければ幸いです。 集合 集合 再度質問します。 集合のところで確信がもてないので質問します。 {A_λ:λ∈Λ}を集合Xの部分集合族とするとき、 (1)いずれかのA_λの元であるXの元全体の集合を部分集合族A_λの和集合といい ∪{A_λ:λ∈Λ}であらわす (2)すべてのA_λの元であるXの元全体の集合を部分集合族A_λの共通集合といい ∩{A_λ:λ∈Λ}であらわす この意味は、和集合は赤い点全部で、共通集合は青い点全部ということでしょうか? 添付画像を見てください。 この考えでよろしいでしょうか? だめだったら、正しい考え方を教えてください。 部分集合について n個の元からなる集合の部分集合は全部で2^n個と聞きましたが、証明はできるのでしょうか?数学的帰納法を使うのでしょうか? 凸集合の問題教えて下さい。 A1とA2が平面上の凸集合であるとき、A1とA2の共通部分A1(Uの逆の記号、共通部分を表す記号)A2は必ず凸集合となる。このことを証明する問題なのですが・・・1.2の数字は小さい数字です。問題文も理解できない私です。凸集合とは何でしょうか?なんだかさっぱりです。ちょこっとでも分かった方はおばかな私に教えて下さい。お願いします。 無限集合に関する証明 無限集合が存在しないことを証明しました。 以下の証明が合っているかどうか知りたいです。よろしくお願いします。 <定義> 集合の系列、A1,A2,・・・An・・・について、以下の条件が成り立っているとき、そのときに限り、この系列を、無限拡大系列と呼ぶことにします。 1:任意のnについて、An⊆An+1 <証明> 無限拡大系列が存在すると仮定します。任意の無限拡大系列をI1,I2,・・・In・・・とします。I1,I2,・・・In・・・の和集合をI∞とします。あるnについて、I∞=Inと仮定します。まず、無限拡大系列の定義より、In⊆In+1となるIn+1が存在します。よって、I∞⊆In+1。しかし、I∞の定義より、In+1⊂I∞。よって、矛盾が生じました。よって、全てのnに対して、、I∞≠In。そして、I∞の定義より、全てのnに対して、In⊂I∞。よって、全てのnに対して、In⊆I∞。これより、I∞を全体集合としたときの、I1,I2,・・・In・・・の補集合をそれぞれ、I1',I2',・・・In'・・・とすれば、全てのnに対して、In'は空集合ではありません。そして、無限拡大系列の定義から、I1'⊇I2'⊇・・・⊇In'・・・となることが分かります。よって、I1',I2',・・・In'・・・の共通部分は空集合ではありません。よって、I1',I2',・・・In'・・・の共通部分の補集合、つまり、I∞が、全体集合であるI∞と等しくなりません。よって、矛盾が生じました。よって、無限拡大系列は存在しないとなります。そして、無限集合が存在すれば、無限拡大系列は存在することになってしまいます。よって、無限集合は存在しないとなります。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学A(集合) 定期テストで、よく分からない問題が出てきました。1週間経てば授業で分かるのですが、凄く気になるので質問します。 次の集合A、Bの共通部分A∩Bが{3、a}となるとき、定数aの値を求めよ。 A={2、2a+2、a2-1}、B={a+1、a+5、3a+4} 教科書、問題集に似た問題はありませんでした。数学が得意のはずの父も解けませんでした。 数学 集合について 数学1Aの範囲で集合について質問です。 先日センターの演習問題で出て疑問に思ったのですが AはBの部分集合の場合、Bの範囲にAが存在する。 ということですが、「A=B」の場合もAはBの部分集合というのでしょうか? 全有界な距離空間がわかりません 「(X, dx)を距離空間とする.この距離空間が全有界であるなら,部分距離空間(Y, dx)も全有界である.(X, Yは集合,dxは距離)」 この命題は正しいのでしょうか?この命題が正しければ,納得する他の命題が2つほどあります.ですが,参考書のどこにもこの命題については書かれておらず,自分で証明しようとしましたが,できませんでした. この命題が正しいのかどうか,ご教授願います. 集合と数学的帰納法 1.平面上の点P(x,y)の集合A,Bを次のように定義する。 A={P(x,y)|x>0},B{P(x,y)|y≦-(x-k)^2+k かつ y≧kx-1} Bは空集合でなく、しかも B⊂Aであるためには、kはどんな範囲の値でなければならないか = という問題です。わかりにくいやつは⊂の下に=がついたものです。 2.これは数学的帰納法の問題なのですが 数学的帰納法というのは学校で決まった形にあてはめるものだと 習いある程度お決まり文句がありそれはおぼえなければならないと 習いました。で、始めにn=1を代入して成り立つと証明し 次にn=kのとき成り立つと仮定してn=k+1の場合を考えるのですが これは右辺にk+1とする式をひとつ付け加えて左辺にそれと同じものを あてはめて解くというものだと自分では思っているのですがそれでは 解けません・・・ちょっと読解力に欠けているので 例題を出すので解き方を教えてください。 すべての自然数nに対して下の不等式が成り立つことを示せ。 1+1/2+1/3+1/4+・・・+1/n≧2n/(n+1) という問題です。このれいだいのさっきいった n=kを仮定してn=k+1のところを考えるところを教えてください 数学 部分集合 真部分集合 部分集合と真部分集合について教えて下さい。 前回の質問内容 http://okwave.jp/qa/q8469317.html 「X = { 1, 2, 3 } において、集合Xの部分集合とは、 空集合、{1} 、 {2} 、 {3} 、 {1, 2} 、 {1, 3} 、 {2, 3} 、 { 1, 2, 3 }の 8 個。 「X = { 1, 2, 3 } において、集合Xの真部分集合とは、 空集合、{1} 、 {2} 、 {3} 、 {1, 2} 、 {1, 3} 、 {2, 3} の 7 個。 であると教えて頂きました。 X = { 1, 2, 3 } において、 空集合、{1} 、 {2} 、 {3} 、 {1, 2} 、 {1, 3} 、 {2, 3} はX = { 1, 2, 3 } の部分集合と言えるし、 真部分集合とも言えますが、どちらで言っても良いのでしょうか? それとも理解している内容がかなりおかしいでしょうか? 以上、ご回答よろしくお願い致します。 集合論の命題の証明について質問させていただきます. 集合論の命題の証明について質問させていただきます. 集合列{E_k},k=1,...における各E_kが互いに素(E_i∩E_j=空集合) ならば ∪E_k (ただし,∪はk=nから∞まで)は単調減少列である(nを大きくすると空集合に近づく) 以上が示したい命題です. おそらくイプシロン・デルタ法を使えば良いと思われるのですが, 「∪E_k (ただし,∪はk=nから∞まで)は単調減少列である」 示したいこの部分をイプシロン・デルタを使って記述する方法がわかりません. よろしければご教授いただけないでしょうか? よろしくお願い致します. 集合 和集合 共通集合 わかりません 集合 和集合 共通集合 わかりません {A_λ:λ∈Λ}を集合Xの部分集合族とするとき、 (1)いずれかのA_λの元であるXの元全体の集合を部分集合族A_λの和集合といい ∪{A_λ:λ∈Λ}であらわす (2)すべてのA_λの元であるXの元全体の集合を部分集合族A_λの共通集合といい ∩{A_λ:λ∈Λ}であらわす とあるのですが、よくわかりません。 どなたか分かりやすく解説してください。 論理学と数学(とくに高校数学) 論理学に関する質問です。 高校数学では 公理・定義→定理→問題を解く という構図が考えられると思います。また、最初に選ぶ公理系しだいでいろいろな体系ができるのではと思っています。 A1. ここで論理学における規則はどこに関わってきますか。 A2. 「A⇒B」という命題はAもBも真ならば、命題も真なはずです。「1=1⇒素数は無限に存在する」という命題は数学的には真なはずですが、まったく証明では使えない。ならば論理学だけでは数学上の証明にとって不十分ではないですか。また不十分ならば数学と論理学はどのようにこの問題を回避しているのですか。 数学(高校数学)を勉強しているのですが、前から数学と論理学は密接に関係があると思ってきました。しかし、高校生で、論理学については学ぶ機会がありません。できれば僕の論理学に対する無知も考慮に入れて上記の2問にお答えいただけると幸いです。 注目のQ&A 40代前半。自立していないと言われました 恋人が異性と2人で出かける場合、どこまで許す? 注意された時 恋人について わざわざ隣に座る男性 弱者男性が心を保ち続けるための生き方について パソコンの買換え だし巻きたまご 定電流源 教えて下さい カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム マッチングアプリは顔写真が重要!容姿に自信がなくても出会いを見つけるには 美容男子ミドル世代の悩み解決?休日ファッション・爪・目元ケア プラモデル塗装のコツとは?初心者向けガイド 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
おぉー!これはいい例ですね.とても分かりやすかったです. ありがとうございました!