• 締切済み

An<An+1の証明

hugenの回答

  • hugen
  • ベストアンサー率23% (56/237)
回答No.2

(1+1/4)^4 = 1 + 4/1*1/4 + (4*3)/2!*1/4*1/4 + (4*3*2)/3!*1/4*1/4*1/4 + (4*3*2*1)/4!*1/4*1/4*1/4 = 1 + 1 + 4/4*3/4*1/2! + 4/4*3/4*2/4*1/3! + 4/4*3/4*2/4*1/4*/4!

関連するQ&A

  • An={1+(1/n)}^n (n=1,2,3,…)について…(続く)

    【問題】An={1+(1/n)}^n (n=1,2,3,…)につい数列{An}は単調増加であることを示せ。すなわちAn<A(n+1)を示せ。またAn<3であることも示せ。 (※ただし,二項定理を利用せよ。) よろしくお願いします。 二項定理にあてはめてみたのですが…そっからさっぱりです^^;

  • 下に有界な数列{an}の極限とanの関係の証明

    こんにちは。大学学部生1年です。 処理できない問題があるのでご協力いただきたく投稿しました。 なお、今考えている証明を載せておきますので、訂正などしていただけると嬉しいです。(^^; 【問】 下に有界な単調減少列{an}について、{an}が極限αを持つならばan≧αを証明せよ。 ∵)∃Mは実数,∀nは自然数;M≦anとする。   また、αが{an}の極限であることから、   ∀ε>0,∃Nは自然数,n≧N;|an-α|<εが成り立つ。―(1)   今、an<αと仮定すると、{an}は単調減少列なので、   α>an≧an+1≧an+2≧…≧Mとなる。―(2)   (1)より、an<αのとき、α-an<ε   また、(2)より、α-an<α-an+1<α-an+2<…となり、   αが極限であることに矛盾する。   よって、an≧α                  (証終) なんか変な気がするんですよね・・・ 環境依存文字が多かったため、表記が稚拙なところがあります。すみません。

  • 数列(と、帰納法?)

    数列anは an+1=2an/(1-an^2) n=1 2 …… をみたしているとする。 以下の問いに答えよ (1) a1 =1/√3とするとき 一般項anを求めよ (2) tan(π/12)を求めよ (3) a1 = tan(π/20) とするとき an+k = an nは3以上 をみたす最小の自然数kを求めよ 数列の漸化式がtanの加法定理の形になってるのは分かるんですが、類推してから、帰納法で証明しきれませんでした。 以上3問お願いします。

  • 数列(an)の初項から第n項までの和をSnとすると

    数列(an)の初項から第n項までの和をSnとするとき、次のそれぞれの場合においてanをnの式で表せ。 1、Sn=n(n+1)(n=1,2,...) 2、Sn=1/(n+1)(n=1,2,...) 等比数列(bn)の初項から第n項までの和TnがTn=p-3n+1/4(n=1,2,..)と表されるとき、定数pの値を定めよ。 nを自然数とするとき、次の数列(an)の一般項anを求めよ。 1、-7,-9,-8,-4,-3,-13 2、-5,-3,1,9,25,57 誰かわかる方教えてください

  • 条件を満たす自然数

    この前質問して解決したと思ったのですが、疑問に思うことができてしまったのでもう一度質問します。 nを自然数とするとき、数列an=(3^n+5^n)/2^nとおく。 この時、nが偶数ならanは自然数でないことを示し、anが自然数となるnをすべて求めよ。 そこで an = (9^k+25^k)/4^k = ((2x4+1)^k+(6x4+1)^k)/4~k ここで分子は4の倍数 + 2と 表す事ができるので, an= ( 4xl+2)/4^k (lは 自然数) となる。 ところでこれは分母が4の倍数であるが、分子が4の倍数+2であるため割り切れない。 したがって anは自然数でない。 との回答を頂き、これには納得しました。 ところが、その次の nが奇数であれば n=2k+1(K=0,1,2,3,,)と表すことができる。 すると与式は an= ((3x(2*4+1)^k+5x(6:4+1)^k)/2/4^k となる。 これはまた an= (4l+8)/2/4^k (lは自然数) と書く事ができる。 これが 自然数になるためには K=0,1のときのみである したがって anが自然数となる nは n= 1,3 のみである 。 n=1 an= 4 n=3 an=19 とできることが疑問です。 よく考えてみると、l=6,k=2やl=30,k=3でもan= (4l+8)/2/4^kは自然数となりますし・・・ かといって、そんな場合はないとの証明もできません。 分かる方、回答お願いします。

  • 条件を満たす自然数

    AO入試の問題です。 nを自然数とするとき、数列an=(3^n+5^n)/2^nとおく。 この時、nが偶数ならanは自然数でないことを示し、anが自然数となるnをすべて求めよ。 この解き方が分かりません。解答は手に入れることが出来なくて・・・ 二項定理など使ってみましたがどうも上手くいきません。 解答分かる方よろしくお願いします。

  • 数列{an}、{bn}の共通項から数列作成問題

    よろしくお願いします。 an=8n-2 bn=6n+2 とする。 数列{an}と{bn}に共通して現れる数を小さい順に並べて新しい数列{cn} を作る時、cnの初項と公差を求めよ。 という問題で anの第m項と、bnの第n項が等しくなるから、 8m-4=6n+2 ⇔2(2m-1)=3n これより2と3は互いに素だからn=2k と表せられる。 よってbnのnに2kを代入して、 cn=b2k=6(2k)+2=12k+2 ゆえにcn=12n+2 と解きましたが間違っておりました。 解答では、 an=8n-2=8(n-2)+14 bn=6n+2=6(n-2)+14 と変形できる。am=bnとすると8(m-2)+14=6(n-2)+14 よって 4(m-2)=3(n-2), m≧2、 n≧2 4と3は互いに素だから、kを自然数として m-2=3(k-1) よってm=3k-1からcnはanの第3k-1項であり、 8(3k-1)-2=24k-10=14+(k-1)*24 したがって初項14、公差24である。 と解いてありました。 私の解答のどこがいけないのか、解答は一体何をやっているのか を教えて下さい。 よろしくお願いします。

  • 数学の問題です。わかる方教えてください。

    an+1-anの漸化式です。 (1) a1=1 an+1=an+4nで定義される一般項anを求めよ。 (2) nが4以上の自然数の時2n>3nの不等式を証明せよ。 以上(1)・(2)のとき方を教えていただきたいのです。 よろしくお願いします。 

  • 証明なんですが・・・

    Σ(k=1 から n) nCk2^k=3^n-1を証明せよという問題なんですが・・・ 二項定理を使って頑張ってみたのですが、考えがいたらず証明できませんでした。 どなたかやり方だけでもいいので教えていただけると助かります。

  • 数列の極限の証明

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。