検索結果

1階微分方程式

全669件中361~380件表示
  • 全てのカテゴリ
  • 全ての質問
  • 高校物理におけるdy/dxの扱い

    高校物理におけるdy/dxの扱い 親戚の子の高校物理の問題(高難易度)の解説を見ていて気になることがありました。 途中で微分の式が出てくるのですが、   (ナントカ)・dy/dx=(カントカ) のような式が出てきたのですが、その直後に  両辺にdxをかけて   (ナントカ)・dy=(カントカ)・dx というような変形をして解説が続いていました。 自分は高校生の時に、数学で「dy/dxは分数ではなく微分の記号。ただし合成関数などの微分では分数のように扱える」とかのように習った記憶があります。しかしこの解説では、dy/dxをもはや分数と同様に扱っているように見えました。 物理の世界ではこういった式変形はよくあるのでしょうか? また高校物理でこういった表現をすることに支障は無いのでしょうか? ちなみに自分は数学は大学受験レベルまで、物理は高校の授業レベルの知識ですので、それを考慮して答えていただければ幸いです。

  • 物理 「相対運動」の問題の解き方・考え方がわかりません><

    物理 「相対運動」の問題の解き方・考え方がわかりません>< --------------------------------------------------- 問題:Aはv(A)=10[m/s]の等速でt=0に原点Oからスタートする。 Bは初速が0でa(B)=+2[m/s^2]の等加速度運動を位置P(x=21[m])から始めた。 (1) t=0でBからA見たAの速度はいくらか。 (2) 最初にAがBに追いつく時刻t(1)を求めよ。 (3) Bから見てAが正の方向に最も離れるのはいつか。 (4) そのときAとBの距離x(1)はいくらか。 答え: (1) +10m/s (2) t(1)=3[s] (3) 5秒後 (4) x(1)=4[m] --------------------------------------------------- (1)はv(BA)=v(A)-v(B)=10[m/s] とわかったのですが、 (2)からよくわかりません>< (2)は自分で考えたのですが、AがBに追いつくから相対距離は0で 相対加速度はa(BA)=-2[m/s^2] 相対初速度はv(BA)=10[m/s] これより相対運動の等加速度運動の公式の距離の式 x=1/2at^2+vot にあてはめて 0=-t(t-10)となってしまいt(1)=3となりませんし、21mはなれてることを全く使ってないことになります>< どこが間違ってるのでしょうか><?? あと相対距離=物体間の距離 ではないんですかね?? (3)(4)も相対運動が理解できてないんでわかりません>< 長文で申し訳ないんですが、 解き方・考え方を教えてくれませんか><?

  • 初期値問題でのしつもんです。

    初期値問題でのしつもんです。 問)d^2y/dx^2 + 4 dy/dx + 4y = 0   y(0) = -1 dy/dx(0) = 3 特性方程式の解は λ = -2 y = c1*e^(-2x) c2*e(-2x) y(0) = c1 + c2 = -1 dy/dx(0) = -2c1 -2c2 = 3 c1 = c2 =0 ? となってしまいました。 当方初心者でどこが分かっていないのさえも分かっていない状態ですので お手数ですが丁寧な回答おねがいします。

  • 微分方程式

    微分方程式の特殊解のおき方がわかりません y"+y=secx 同時微分方程式を解くと y=c1cosx+c2sinx となるところまでできるのですが ここから y(x)=Acosx+Bsinx とおいて計算してもうまくいきません お願いします

    • pluta
    • 回答数6
  • 微分積分から見たsinとcosの関係

    sinとcosは符号を別にすればたがいに入れ替わりますが、このように微分積分でたがいに入れ替わる関係にある関数はほかにもあるのでしょうか。

    • noname#194289
    • 回答数6
  • 非線形微分方程式の問題です

    非線形微分方程式について質問です。 とある大学院試験の数学の問題で次のような問題がありました。 y = dy/dx (x) + 4(dy/dx)^2 この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。 非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。 私はこの問を解けませんでした。 解くことは可能なのでしょうか。 お願いします。

  • 4次方程式の固有値の求め方

    4次方程式の固有値の求め方がわかりません。具体的には Ax^^^(xの三回微分)+Bx^^(xの二回微分)+Cx^(xの一回微分)+Dx=0 といった式の固有値を求めたい場合です。固有値は3つ求められると思うのですが、どういったふうに状態変数を置いていいのかがわかりません。よろしくお願いします。

  • 連立微分方程式を見ただけでカオスかどうかわかりますか?

    ある連立時間微分方程式の解がカオスになるかどうかの判別方法はあるのでしょうか?少なくとも、安定判別法で安定解になっていてはいけないということは予想できるのですが、カオス判別法みたいなものはあるのですか?カオスの導入的な書籍の情報でもよいので教えてください。

  • 線形一階方程式

    数学の課題で、 置換 z=y^(1-n)により、ベルヌーイの方程式        y′+P(x)y=Q(x)y^n はzについての線形一階方程式に変えられることを示せ。 という問題が出たのですが、解き方が分かりません。回答をよろしくお願いします。

    • oyoyo11
    • 回答数1
  • 水平投影における角度と初速度

    物理の問題です。石を15m先の15mの高さの窓に向って投げる時、石の初速度と投げ出す角度を求めなさい、という問題なのですが、時間tが与えられていないので、何度計算や式を展開してもV0が残ってしまい、求めることができません。 どなたか解き方を教えてください。 ちなみに答えは初速度19.18m/s、角度は63.43°位になるようです。 お願いします。

  • 微分方程式

    こんにちは。微分方程式についての質問なのですが、 (x^2+1)dy/dx+4xy=4axy^2 をとけという問題で、答えが手元にないので質問させてもらいたいのですが、この問題は ベルヌーイの定理で線形方程式にしたあと、右辺=0と置き左側の一般かいをもとめ、そのあと右の特解をAx+Bとおきその値を求めそれらを足し合わせるという方法であっているのでしょうか?? 自信がないのでどなたかお願いします。

  • RC、LC回路でのコンデンサの放電について。

    RC、LC回路でのコンデンサの放電について教えてください。 また私は次のように考えているのですが、どこか誤りがあるのでしょうか? (1)RC直列回路での放電。(RCのみで、電池はありません)  コンデンサでの初期電荷をQとする。 q(t)/C = Ri(t) 微分して 1/C・dq(t)/dt = Rdi(t)/dt ここで放電を考慮するとdq(t)/dt=-i(t)より -i(t)/C = Rdi(t)/dt またq(0)=Qより Q/C=Ri(0) よって。。。。 (2)RC直列回路での放電。(RCのみで、電池はありません)  コンデンサでの初期電荷をQとする。 q(t)/C =Ldi(t)/dt ここで放電を考慮し dq(t)/dt = -i(t)より q(t)=-∫i(t)dt よって -∫i(t)dt/C = Ldi(t)/dt ラプラス変換 -( I/s+∫i(t)dt(t=0) )/C = L( sI-i(0) ) ここで ∫i(t)dt(t=0) = Q i(0)=0 より。。。。 RCのほうはあっていると思うのですが、LCのほうは自信はありません。 よろしくお願いします。

  • 微分方程式の一般解

    y \'\' + f1(x)y \' + f2(x)y=g(x)の場合の一般解はどのように表したらいいのでしょうか。 y \'\' + ay \' + by = g(x)のように係y \'\' + f1(x)y \' + f2(x)y=g(x)の数が定数だと特性方程式とロンスキーから導けるのですが y \'\' + f1(x)y \' + f2(x)y=g(x)の場合はどのようなこうしきがあるのでしょうか。 またdy/dxとおく場合はどのようなときでしょうか。

  • ベッセル関数について

    ベッセル関数についてどのような関数なのか高校生でもわかるような範囲でお願いします。 検索かけてWikipediaみてもわかりません。他で検索してもさっぱりイメージがわきません。 よろしくお願いします。

  • 微分方程式の種類と解法について。

    現在、以下のような微分方程式が解けなくて困っています。 (d^2/dx^2)T+a*(d/dx)T+b*(d^2/dy^2)T=0 全ての項がxについての微分であれば簡単に解けるのですが、 最後の項がyについての微分であるため解けません。 分かる方はぜひ教えてください。

  • 差分法、差分近似

    差分法、差分近似とはどういうものでしょうか? 微分に関するものだと思うのです・・・。 初歩的な質問ですみません。 よろしくお願いします。

  • elliptic differential equation

    vector Helmholtz equationの英語の説明を読んでいます。 "The vector Helmholtz equation is an elliptic equation". という文章があるのですが、このellipcitとはどういうものを 指すのでしょうか? 当方、数学の知識はほとんどありません。イメージだけでも つかめればと思います。

  • 微分方程式

    微分方程式の復習をしているのですが (1)y'+2y=sin3x (2)y'+4y=1+2x (一般解を求める) (1)y'+3y=1,y(0)=-2 (2)y'+y=cosx,y(0)=0 (初期値問題を解く) 解き方が全く分からないので誰か分かりやすく教えてください。

  • 時定数の求め方

    R*{dg(t)/dt}+q(t)/C=E が q(t)=CE(1-e^-(t/RC)) となる過程を教えてください お願いします 必死です http://nkiso.u-tokai.ac.jp/phys/exp/titles/timecont.htm これの(1)からのへんけいです お願いします

    • kon4758
    • 回答数5
  • 微分方程式の問題がわかりません

    こんにちは、微分方程式の授業でわからない問題があって困ってます、 y''+ay'+by=0(a,bは実数の定数)においてy=(4-2x)e^-xが解である場合、a,bの値を求め、その一般解を求めよという問題です。 最後のページ解答が載っていてa=2、 b=1 y=(c1+c2x)e^-x (c1, c2は任意定数)となっているのですが。過程を是非教えていただきたいと思います。よろしくお願いします。

    • kyapppu
    • 回答数3