検索結果

1階微分方程式

全669件中1~20件表示
  • 全てのカテゴリ
  • 全ての質問
  • 一階微分方程式

    y=f(x) 下記の微分方程式は解けますか?(プログラム以外) dy/dx=a*y^4+b*y^3+c*y^2+d*y+e(a,b,c,d,e常数) もし出来れば、そのプロセスを教えていただけませんか

    • enli
    • 回答数4
  • 一階微分方程式

    この微分方程式の解き方がわかりません。どなたかわかる人がいらしたら、教えてください。 Mdv(t)/dt=-ζv(t)+a*sin(ωt) 初速度をv(0)とおくと、この線形微分方程式の解は、 v(t)=(v(0)+(aω/M)/(ω^2+(ζ/M)^2)exp(-ζt/M)+(a/M)sin(ωt-δ)/√(ω^2+(ζ/M)^2) 公式どおり計算てみましたが、部分積分のところが上手に出来ません。その部分積分は、 v(t)=exp(-ζt/M)[a/M∫exp(ζt/M)*sin(ωt)dt+v(0)] のインテグラルの部分です。

  • 1階線形微分方程式

    xy'-(1+x)y=x^2を解けという問題です。 y'-{(1+x)/x}y=x P=-{(1+x)/x}, Q=xとして ∫-{(1+x)/x}dx=-x-loglxl+c' ∫e^(-loglxl-x+c')x dx=±e^(c')∫x^2e(^x) dx ここから、どうすすめばいいのでしょうか。 この微分方程式の一般解は、y=x(Ce^x-1)なのですがどうやったらここまできれいになるのでしょうか。その導き方を教えてください。 お願いします。

  • 1階線微分方程式

    1階線微分方程式 y'+2xy=2xを解く。 という問題がるのですが、その後の解き方がわかりません。 ∫2xdx=x²+C だから、答えは  y=-1+ce^x² とあるのですが、わかる方解説お願いします。

    • wxw
    • 回答数2
  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 1階の微分方程式

    (dv/dt)+av=0 aを定数とする。 初期条件v(t₀)=v₀とする。 わかりません。詳しい解説お願いします。

  • 1階の微分方程式

    y'+(2x+1)y-y^2=x^2+x+1の一般解を求めよ。(y'はdy/dx)という問題なんですが、とりあえず=0のときの解、y'+y=y^2の解を求めたみました。変数分離で解はy-y^2=Ce^(-x)になりました。これを使ってなんとかできると思うんですが、わかりません。ヒントだけでも教えていたたきたいです。よろしくお願いします。

    • wainder
    • 回答数3
  • 1階常微分方程式

    画像の問題がどう考えてもわかりません。。。 解き方がわかる方、よろしくお願いします。

  • 1階の微分方程式

    (dv/dt)+av = b a,b を定数として、v(t₀)=v₀を初期条件とする。 (dv/dt)=b-av b-av=zとおいてからどうするのかわかりません。 詳しい解説お願いします。

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 1階の微分方程式

    解答の仕方が考えても良くわかりませんでした。やり方だけでもアドバイスお願いします。 関数が微分方程式を満たすことを証明せよ。 (1) y^2=2Cx+C^2 , y(y')^2+2xy'-y=0 (2) y=-x-1+Ce^x , y'=x+y C:定数

  • 1階線形7微分方程式

     次の微分方程式を解いてください。  y´-(2X+1)y=2Xe^X    積分因子は    e^-(X^2+X)だと思いますが…  よろしくお願いします。

  • 1階の線形微分方程式

    1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx

    • cckksv1
    • 回答数2
  • 1階の常微分方程式

    この問題の解き方と答えが分からないので教えてください。 dx/dy=x/y+1の一般解を求めよ。 よろしくお願いいたします。

  • 一階微分方程式の問題

    数学の問題で、 「ロープが荒い表面の円筒のまわりに巻かれているとき、その一端における小さい力は他端におけるいっそう大きい力に対応できる、すなわち、円筒に接触しているロープの全ての部分について、単位長さ辺りの張力の変化はその張力に比例し、その比例定数はロープと円筒との摩擦係数を円筒の半径で割ったものである。摩擦係数が0.35であるとして、一端を保持している人がその人の出し得る力よりも200倍だけ大きい力に対抗できるためには、直径1ftの柱にロープが幾回巻かれねばならないか」 という問題があるのですが、解き方が分かりません。どうか回答よろしくお願いします。

    • oyoyo11
    • 回答数1
  • 1階常微分方程式で。。。

    最近独学で微分方程式を勉強していたんですけど、 1階常微分方程式の辺りで躓いてしまいました。。。 わからない問題は死ぬほどあるんですけど、 この三問の解法を教えてください<(_ _)> 他は…もう少し頑張ってみます頑張ってみます。 1)一般解を求めよ:y´=(x-1)y^2 2)次の初期値問題を解け:y´=2xy(1+y),y(0)=-1/2 3)一般解を求めよ:y´=(x+y)/(x-y)

    • Berabow
    • 回答数3
  • 1階線形微分方程式の解

    RC回路(ローパスフィルタ)への入力電圧をVi(t)、 出力電圧をVo(t)とすると 微分方程式は dVo(t)/dt = -Vo(t)/RC + Vi(t)/RC になりますが、 t=t0のときの初期状態Vo(t0)を満たす解は Vo(t) = Vo(t0)*exp{-(t-t0)/RC} + (1/RC)∫[t0,t] Vi(t')*exp{-(t-t')/RC} dt' となるらしいのですが、どのように導けばよいのでしょうか?

  • 1階線形微分方程式の問題です

    1階線形微分方程式の問題です (d/dy)f(x,y)=-(4/y)f(x,y)+{8x/(πy^3)}arccos(x/2y) の一般解を求める、という問題がわかりません。 わかる方は教えてください

    • shuy39
    • 回答数1
  • 電気回路 1階微分方程式の問題

    次の問題を教えてください。 ●インダクタンスLと抵抗Rからなる直列回路が、電圧V0の直流電源につながる。時刻t=0で回路のスイッチを閉じる。 1)時刻tで、回路に流れる電流をx(t)[A]とする。キルヒホッフの法則を用いて電流xに対する微分方程式を求めよ。 v0=L(dx)/(dt)+Rx でよいのでしょうか。 2)この微分方程式について、その斉次方程式の一般解xt(t)をもとめよ。 (dx)/(dt)+R/L・x=0 xt(t)=Ae^(-r/L)t でいいですか。

  • 電気回路 1階の連立微分方程式

    「2階の微分方程式」を「1階の連立微分方程式」に書き換える意義を教えて下さい。 まずは、添付画像(本への書き込み) と 原著のpdfの13ページ目(演習1.2、本でいうと3ページ目)をご覧ください: https://www.morikita.co.jp/data/mkj/091782mkj.pdf 階数の引き下げ方は理解しています。ただ、なぜ引き下げるのかが不明です。 分からないのが、式(7)から式(9)にする過程で、すべてを右辺に移項して、左辺をゼロにしているようです。 キルヒホッフの第二法則「一周すると総和はゼロ」に基づいてだと思います。 しかし、式(9)になると、その左辺のゼロが d/dt [ x[1], x[2] ]' ←縦書き に書き換わっています。 どういうことですか? しかも、d/dt [ x[1], x[2] ]'のx[2]って元々x[1]の微分ですよね? d/dt [ x[2] ]なら更に微分するということになりますよね? つまり、x[1] = qから辿ると、2階の微分 d(dq/dt)/dt) になります。 これは式(2)のLの項の (d^2 q)/(dt^2) と同じ意味ですか? 今まで私が知っている微分方程式は y' = 2(x-1) の両辺をxで積分して y = x^2 - 2x + C …のように、左辺はyでした。 今回、yは式(10)の左辺にありますね。 式(9)と式(10)の関係が不明です。 よくよく考えたら、私にとって連立微分方程式を扱うのは今回が初めてでした。 過去に終わらせた微分方程式の本には連立微分方程式は載っていません。 ネットで2時間検索したのですが、納得いく答えは見つかりませんでした。 どうか納得いくように教えて下さい。よろしくお願いします。