• 締切済み
  • 困ってます

1階線形7微分方程式

 次の微分方程式を解いてください。  y´-(2X+1)y=2Xe^X    積分因子は    e^-(X^2+X)だと思いますが…  よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数89
  • ありがとう数1

みんなの回答

  • 回答No.2

> 早速のご回答ありがとうございます。定数変化法で解かれましたが、積分因子を求めて解く場合と比べると > どちらが計算は楽でしょうか。 どちらの方法の場合でも、この形の方程式の場合には結局は等価な計算をするわけですが、どちらの考え方の方が楽かといえば結局は慣れなんだと思います。私の場合は、常微分方程式であれば取り敢えず何でも定数変化法を試します。 ■積分因子を使って求めるならば: 積分因子を M として、A = My を微分すると、  A' = M' y + M ((2X+1) y + 2Xe^X)   = [M'+M(2X+1)] y + 2MXe^X. ここで M' + M(2X+1) = 0 となる様に M を選ぶと M = B exp(-X^2-X).  A' = 2BX exp(-X^2),  A = -B exp(-X^2) + C,  y = A/M = -exp X + C/B exp(X^2+X). ■積分 > 特にご回答のあった4行目から5行目にかけてですが、4行目の両辺をxで積分するのですよね。5行目の右辺の積分ですが、これは部分積分になりますか? 変数変換です: α = X^2,  A(X) = -∫2X exp(-X^2) dX = -∫exp(-α)dα = exp(-α) + B.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式の解法ですが、

    (x^2-y^2-z^2)dx+2xydy+2zxdz=0 3変数の微分方程式ですが、完全形ではないものです。 どのように解けばよいか教えて下さい。 積分因子を求めると思うのですが、まず導出過程が分かりません…

  • 微分方程式の一般解の求め方

    (x + (x^2 + y^2)x^3)dx + ydy = 0 の一般解の解き方がわからなくて困ってます。一見して完全形になるのかと思ったのですが、d((x+・・・・)=0にはならないので完全形ではなく積分因子を導入しなければならないようなのです。積分因子をうまく求める方法はありますか?高等教育で数3を学んでおらず、微分方程式に関してほとんど独学でやってきてるので、できるだけ詳しく教えて下さい。よろしくお願いします。

  • 微分方程式について

    こんにちは。 今、独学で微分方程式の勉強を行っているのですが、問題集に載っていた下記の問題の解き方が分からず困っています。 ・(2y+3xy^2)dx+(2x+4x^2y^2)dy=0の一般解を求める  完全微分方程式ではないので、積分因子を求める必要があり、u=x^mt^nと仮定して求めようとしたのですが、途中で、n-m=4x^2 3n-4ym=-6 という式が出てきてしまい、計算が出来ません。 ・(y^2+2ye^x)dx+(2y+e^x)dy=0,y(0)=1  2変数の初期値問題はどのように解けば良いのでしょうか? 何度も解いてみたのですが、答えを求める事は出来ませんでした。 少しでもアドバイスを頂ければ幸いです。

  • 回答No.1

定数変化法で。 z' - (2X+1) z = 0 を解くと、z = A exp(X^2 + X), (A は積分定数). ここで y = A(X) exp(X^2 + X) を元の微分方程式に代入して整理すると、  A(X)' = -2Xexp(-X^2),  A(X) = -exp(-X^2) + B, (B は積分定数),  y = -exp X + B exp(X^2 + X)■

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速のご回答ありがとうございます。定数変化法で解かれましたが、積分因子を求めて解く場合と比べると どちらが計算は楽でしょうか。 不勉強で途中の計算がわかりません。特にご回答のあった4行目から5行目にかけてですが、4行目の両辺をxで積分するのですよね。5行目の右辺の積分ですが、これは部分積分になりますか?  いずれにしましても正解をいただきました。 ありがとうございます。 また、ご指導をお願いします。

関連するQ&A

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 1階の線形微分方程式

    1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。

  • 微分方程式について

    次のような微分方程式があります d^2 x/dx^2 - (dy/dx)(4+x)/x +y*(6+2x)/x^2 =0 問題は以下です y=ux^2(uはxの関数)がこの微分方程式の解となるために uの満たすべき微分方程式を求めなさい。 要は u''=u'=u になればいいということじゃないのでしょうか ですがこれだと微分方程式になりません もしくはこれが解答でいいのでしょうか? ヒントのみでもいいので教えてください。

  • 微分方程式

    次の3つ微分方程式はどのように解けばよいのですか? 出来ればそれぞれの微分方程式の名前も教えてください (1)y'=(1+x+3y)^2 (2)(x^2+y^2-a)(x+yy')=2xy(y-xy') (3)2xy^2y'+y+y^3=2(1+y^2)y'

  • 1階線形微分方程式について

    こんばんは。よろしくお願いします。 微分方程式で、下記の y’/y = α/(1-x) を解こうと昔の教科書を紐解いているのですが、 一向に進みません。 両辺にdxをかけてy、xで積分して logy = α/2・x^2-αx+C      ↓ y = e^(α/2・x^2-αx+C) まで出たのですが、右辺の()内が2次式になってて ここで行きづってしまいました。 この後ってどうすればよいのでしょうか? どうぞ教えてください。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。

  • 数学の微分方程式の問題です

    微分方程式の同次形の問題が分かりません。 次の微分方程式を解け 1.(2x^2)(y')=(x^2)(y^2)-2xy-1 [u=xyとおく] 2.y'=-{x(x^2+y^2+1)}/{y(x^2+y^2-1)} [u=x^2+y^2とおく] です。 途中の過程も書いてあると助かります。 どなたかお願いします。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・

  • 1階線微分方程式

    1階線微分方程式 y'+2xy=2xを解く。 という問題がるのですが、その後の解き方がわかりません。 ∫2xdx=x²+C だから、答えは  y=-1+ce^x² とあるのですが、わかる方解説お願いします。