• ベストアンサー
  • 困ってます

極限値の問題がよく分かりません・・・

極限値の問題では(lim)どの時点で答えと決定してよいのか分かりません・・。何も変化させないままlimの下の数字を代入して、0/0ならロピタルの定理などを使って、答えを導くというのはなんとなく分かるのですが、何も変化させないままlimの下の数字を代入して、0/1や1/0になる時はそのまま答えを0として良いのでしょうか? (説明が下手でスイマセン・・・) また、 lim(X→0)X・logX の出し方が分かりません。 上の疑問と同じで、X・logXを何も変化しないまま0に近づけると(代入すると)答えは0になりますが、そのまま答えにして良いのでしょうか? それとも、logX/(1/X)に変化し、ロピタルの定理を使い、0と導くのでしょうか? どこで変化または微分(ロピタルの場合)をストップさせていいのかが、よく分かりません。 誰か教えて頂けないでしょうか? お願いします!

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数129
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

グラフがかけるのであれば,グラフを書いて,解けばいいと思います. その例がrobecamさんが質問している lim(X→0)X・logXです. f(x)=x・logxを置いて,f(x)のグラフを書いてみてください. ちなみにこのf(x)の外形は有名です. >何も変化させないままlimの下の数字を代入して、0/1や1/0になる時はそのまま答えを0として良いのでしょうか? ↑ もうちょっと考えたほうがいいかもしれませんね. 直感で解答するのは,やはり危険です. 例えば,三角関数であれば, sin(x)/xの形をつくるとか,分数であれば分母の次数を減らしてみて,「これ以上きれいに整理できない」ところまで式を変形してから,limまで飛ばすというスタンスの方が無難です.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます! グラフを利用してみればいいんですね。 極限値も色々なやり方で変化してみたいと思います。 本当にありがとうございました。

関連するQ&A

  • 極限値、ロピタルの定理

    次の問題がわかりません。 lim[x→-∞]x(e^-x) の極限値を求めたいのですが、 =lim[x→-∞]x/(e^x)=-∞/0 ロピタルの定理より lim[x→-∞]1/(e^x)=1/0となって 答えの“-∞”がでないです・・・ どうやってとけばいいでしょうか?

  • 極限値を求める問題

    いつもみなさんの問題解決のためのアイデアに感心しております。 今日行き詰まった問題は、以下のものです。 極限値を求めよ lim[x→0](1/x - 1/sinx) 変形すると lim[x→0]((sinx-x)/xsinx) 0/0の形になるから先日教えていただいたロピタルの定理を使って上下を微分し、 lim[x→0](cosx/(sinx+xcosx)) さらに上下を微分し lim[x→0](-sinx/(cosx+cosx-xsinx)) と置き換えて 答え”0”で良いのでしょうか? よくご存じの方、”正解”がついていないので、ご教示をお願いします。

  • 極限値を求める問題

    極限値の問題です。ロピタルの定理を使うというのですが、ロピタルの定理を使うところまで式を変形できません。わかる方いましたら、式を変形してください。よろしくお願いします。 lim[x→0]((a^x+b^x)/2)^(1/x)

その他の回答 (2)

  • 回答No.3
  • kony0
  • ベストアンサー率36% (175/474)

>(代入すると)答えは0になりますが、 なりませんよ。0×(-∞)は0ではないです。 ロピタルが必要か不要か、どこまで必要かは、「不定形」か否かで判断すればよいと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます! 判断の基準は不定形ですか。 本当にありがとうございました!

  • 回答No.2
  • 12m24
  • ベストアンサー率23% (193/817)

 極限値の0/1は0ですが、極限値の1/0は0にはなりません。ここをとりあえず押さえておいてください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました! 分かりました。1/0は0じゃないんですね・・・ ありがとうございました。

関連するQ&A

  • 極限値

    a>1,p>0で (1)lim x^n/a^x (n∈N) (x→∞) (2)lim x^p/a^x     (x→∞) この2つの問題がどういうふう極限値を求めたらいいか分かりません。“コーシーの平均値の定理”や“ロピタルの定理”を使って解くと思うんですが、どうしたらいいか分からないのでよろしくお願いしますm(_ _)m

  • 極限値の問題について

    極限値の問題について lim[x→∞]log x/x を、ロピタルの定理を使わない求め方が分かりません。何方か教えていただけないでしょうか?

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。

  • (1+1/n)^nを実際にいろいろなnについて計算し、n→∞での極限値

    (1+1/n)^nを実際にいろいろなnについて計算し、n→∞での極限値と比較してみよ。 という問題なのですが、実際にnにいろいろな数字をいれるとnがだんだん大きくなるにつれてeに近づきました。 またlim(1+1/n)^n=eになります。 なので (1+1/n)^nを実際にいろいろなnについて計算すると、nが増えていくほど、eに近づき、すなわち、n→∞の極限値に近づいていくが、一致することはない。 で、答えになりますか、でも、「一致することはない。」が完全にいえないので少し悩んでいます。 教えてください。

  • 極限の問題です。

    添付した画像の問題、 lim[{(logx)^3}/x]  の極限値の答えと途中式を 教えてほしいです(@_@;) ロピタルの定理を使うそうなんですが... お願いします。

  • 極限値が存在する場合

    以下の問いの解答がなく、自分の解き方が正しいのか不安ですので、確認していただきたく思います。 [問い] 極限値lim(X→0) (expX-aX-b)/X**2が存在するような定数a, bを求めよ。 [my答案] 分母のX2乗はゼロになるので、分子もゼロとなり、不定形になると思いました。そしてロピタルの定理を適用しました。 ・分子もゼロになるので、Xにゼロを代入するとb=1 ・次にロピタルの定理をてきようするため、分母と分子をそれぞれxで微分する。lim(X→0) (expX-a)/2X =1/2 lim(X→0) (expX-a)/X ここで公式lim(X→0) (expX-1)/X =1を適用する。 するとa=1となる。 以上より、答えはa=1, b=1になると思います。 これで大丈夫でしょうか。 よろしくお願いいたします。

  • 極限値をあらわす

    f(x)が微分可能なとき次の極限値をf(a),f ’(a)であらわす問題で 1、lim f(a+2h)-f(a) / h   h→∞ 2、lim x^2・f(a)-a^2・f(x) / x-a    x→a の解き方を教えてください A 1、2f ’(a) 2、2a・f(a)-a^2・f ’(a)

  • 有限の極限値

    lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] が0以外の有限の極限値を持つように自然数nを定め、その時の極限値を求めよ。 という問題です。 私は、√(1+x^2)をマクローリン展開し、 √(1+x^2)=1+(x^2)/2-(x^4)/8+0(x^6) (0(x)はランダウの記号) としてから、 lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] =lim[x→0]{-tanx/nx^(n-1)}+lim[x→0][{1+(x^2)/2-(x^4)/8+0(x^6)-1}/x^n] (ロピタルの定理を使いました) n=2のとき =-1/2+1/2 =0 と、題意にそぐわない結果となってしまいました。 どなたか、正答わかるお願いします。

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

  • 極限値

    極限値を求めよ。 lim n→∞ 5n-3/n^2+2n+3 答えは0であっていますか?